scholarly journals Convolutional neural networks for grazing incidence x-ray scattering patterns: thin film structure identification

2019 ◽  
Vol 9 (02) ◽  
pp. 586-592 ◽  
Author(s):  
Shuai Liu ◽  
Charles N. Melton ◽  
Singanallur Venkatakrishnan ◽  
Ronald J. Pandolfi ◽  
Guillaume Freychet ◽  
...  

Abstract

2014 ◽  
Vol 83 (12) ◽  
Author(s):  
M A Shcherbina ◽  
S N Chvalun ◽  
Sergey Anatol'evich Ponomarenko ◽  
Mikhail Valentinovich Kovalchuk

Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


2019 ◽  
Vol 52 (2) ◽  
pp. 247-251
Author(s):  
Detlef-M. Smilgies

Recently, surface and thin-film studies using area detectors have become prevalent. An important class of such systems are lamellar thin films formed by small molecules, liquid crystals or semicrystalline polymers. Frequently, the lamellae align more or less parallel to the substrate. Such structures can be easily discerned by their characteristic X-ray scattering close to the incident plane. This paper describes how such patterns can be simulated, in order to extract morphological information about the thin film.


Langmuir ◽  
2009 ◽  
Vol 25 (16) ◽  
pp. 9500-9509 ◽  
Author(s):  
Darren R. Dunphy ◽  
Todd M. Alam ◽  
Michael P. Tate ◽  
Hugh W. Hillhouse ◽  
Bernd Smarsly ◽  
...  

1994 ◽  
Vol 356 ◽  
Author(s):  
S. G. Malhotra ◽  
Z. U. Rek ◽  
L. J. Parfitt ◽  
S. M. Yalisove ◽  
J. C. Bilello

AbstractTraditionally, the magnitude of the stress in a thin film is obtained by measuring the curvature of the film-substrate couple; however, these techniques all measure the average stress throughout the film thickness. On a microscopic level, the details of the strain distribution as a function of depth through the thickness of the film can have important consequences in governing film quality and ultimate morphology. A new method for determining the magnitude of principal strains (strain eigenvalues) as a function of x-ray penetration depth using grazing incidence x-ray scattering for a polycrystalline thin film will be described. Results are reported for two Mo metallizations ˜ 500 Å and ˜1000 Å thick sputtered onto Si {100} substrates. The magnitude of the principal strains at several penetration depths was accomplished by an analysis of the diffraction peak shifts of at least six independent {hkl} scattering vectors from the Mo thin films. An out-of-plane strain gradient was identified in both Mo films and the strain eigenvalues were found to be anisotropic in nature. This new methodology should work with a variety of thin films and hence would provide quantitative insight into the evolution of thin film microstructure.


Sign in / Sign up

Export Citation Format

Share Document