Biomaterials for Regenerative Medicine

MRS Bulletin ◽  
2005 ◽  
Vol 30 (7) ◽  
pp. 546-553 ◽  
Author(s):  
Samuel I. Stupp

AbstractThe following article is based on a presentation given by Samuel I. Stupp of Northwestern University as part of Symposium X—Frontiers of Materials Research on April 13, 2004, at the Materials Research Society Spring Meeting in San Francisco. Materials designed at the molecular and supramolecular scales to interact with cells, biomolecules, and pharmaceuticals will have a profound impact on technologies targeting the regeneration of body parts. Materials science is a great partner to stem cell biology, genomics, and proteomics in crafting the scaffolds that will effectively regenerate tissues lost to trauma, disease, or genetic defects. The repair of humans should be minimally invasive, and thus the best scaffolds would be liquids programmed to create materials inside our bodies. In this regard, self-assembling materials will play a key role in future technologies. This article illustrates how molecules are designed to assemble into cell scaffolds for human repair and provides examples relevant to brain damage, fractures of the skeleton, spinal cord injuries leading to paralysis, and diabetes.

MRS Bulletin ◽  
2006 ◽  
Vol 31 (1) ◽  
pp. 19-27 ◽  
Author(s):  
George M. Whitesides ◽  
Amy P. Wong

AbstractThis article is based on the plenary address given by George M. Whitesides of Harvard University on March 30, 2005, at the Materials Research Society Spring Meeting in San Francisco. Materials science and biomedicine are arguably two of the most exciting fields in science today. Research at the border between them will inevitably be a major focus, and the applications of materials science to problems in biomedicine—that is, biomaterials science—will bud into an important new branch of materials science. Accelerating the growth of this area requires an understanding of two very different fields, and being both thoughtful and entrepreneurial in considering “Why?” “How?” and “Where?” to put them together. In this fusion, biomedicine will, we believe, set the agenda; materials science will follow, and materials scientists must learn biology to be effective.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Peter J. Wellmann

AbstractThroughout human history, most further developments or new achievements were accompanied by new materials or new processes that enabled the technologic progress. With concrete devices and applications in mind, synthesis and subsequent treatment of materials naturally went along with the progress. The aim of the underlying article is to spot the role of optimization, of discovery, of trial-and-error approaches, of fundamentals and curiosity driven design and development. In a consecutive examination, five missions addressing the challenges facing our world (identified by the European Council) will be cross linked with seven topical areas from materials science defined by the European Materials Research Society. The scope of this examination is to identify approaches and methods to further develop and innovate materials which form the basis of the anticipated solutions.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (3) ◽  
pp. 51-55

The 1989 Spring Meeting of the Materials Research Society will be held at the Town and County Hotel in San Diego, with events spanning April 22-29. Meeting Chairs Robin Farrow, Dick Siegel and Angelica Stacy have developed a program of 16 technical symposia that reflect the continuing key role of materials science in the development of both mature and emerging technologies.Several new topics will reflect emerging areas, including materials for optical storage of information (Symposium F), ultrathin magnetic films (Symposium G), and materials problems of infrastructure (Symposium P). A special workshop will provide a technology update on diamond films (Symposium P) and will feature a joint session with Symposium H, Optical Materials: Processing and Science.Plenary speaker Linus Pauling, research professor at the Linus Pauling Institute of Science and Medicine, will discuss quasicrystals, materials whose atomic structure displays perfect five-fold symmetry, but whose atomic pattern is never exactly repeated as it would be in conventional crystals. During the Plenary Session MRS will also recognize graduate students who have made outstanding contributions as authors or co-authors of papers presented at the 1989 Spring Meeting.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (11) ◽  
pp. 906-913 ◽  
Author(s):  
Craig R. Barrett

AbstractThe following article is an edited transcript based on the plenary address given by Craig R. Barrett, chair of the board of Intel Corp., on April 19, 2006, at the 2006 Materials Research Society Spring Meeting in San Francisco. Since before the industrial revolution, technology has changed lives, opportunities, and economies. Similarly, the digital evolution has touched nearly every aspect of modern life and is reshaping economies around the world. As more and more of the world's people engage in the digital economy, both competition and opportunities will grow. Competitiveness in the global economy will be determined by how people and nations position themselves in the digital evolution. What lies ahead for us in the next 10 years? What new technologies will alter the technology landscape? What are the opportunities going forward, and how do we prepare? How can materials research and development help us to move forward faster?


MRS Bulletin ◽  
2003 ◽  
Vol 28 (7) ◽  
pp. 512-516
Author(s):  
Charles M. Falco

AbstractThe following article is an edited transcript of a talk presented in Symposium X—Frontiers of Materials Research at the 2002 Materials Research Society Fall Meeting in Boston on December 2, 2002. From Bessemer steel used on the first motorized bicycle in 1871 to sintered aluminum ceramic composites and TiN thin-film coatings used on standard production machines today, motorcycles have been at the forefront of the use of high-performance materials. Thanks to developments in materials technology, relatively inexpensive mass-produced motorcycles are now capable of achieving speeds of >190 mph.


MRS Bulletin ◽  
2007 ◽  
Vol 32 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Max G. Lagally

AbstractThis article is based on the presentation given by Max G. Lagally (University of Wisconsin–Madison) as part of Symposium X: Frontiers of Materials Research on April 18, 2006, at the Materials Research Society Spring Meeting in San Francisco.Structures with nanoscale dimensions are the essence of nanotechnology. Beginning with quantum dots and buckyballs, nanostructures now include nanotubes, rods, wires, and most recently, nanomembranes: very thin, large, freestanding or freefloating strain-engineered single crystals that can variously be made into tubes or other shapes, cut into millions of identical wires, or used as conformal sheets. This article provides a brief overview of the fabrication and properties of strained-silicon nanomembranes.


Sign in / Sign up

Export Citation Format

Share Document