Dicyanamide Ionic Liquids: A Versatile Precursor System for Advanced Mesoporous Materials and Functional Composites

2012 ◽  
Vol 1473 ◽  
Author(s):  
Jens Peter Paraknowitsch ◽  
Xenia Tuaev ◽  
Peter Strasser ◽  
Arne Thomas

ABSTRACTIonic liquids (ILs) are highly suitable to act as precursors for nitrogen-doped carbon materials. Therefore two structural requirements must be fulfilled: On the one hand, the cation should carry nitrogen in a preferably aromatic environment, on the other hand nitrile groups are essential that can be e.g. incorporated by dicyanamide anions. Thermolysis of such ILs yields highly conductive nitrogen doped carbon exhibiting a graphitic microstructure. Furthermore, various nanomorphologies can be induced via hard-templating. The material has been shown to sufficiently suppress growth and agglomeration of Pt nanoparticles upon their electrocatalytic performance, when applied as a thin coating on the Pt host material. This novel concept of reactivity could further be applied in other fields of materials synthesis, paving the way for the one-pot synthesis of mesoporous carbon/silica composites and in-situ metal doping thereof.

Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 119227
Author(s):  
Yan Ding ◽  
Yunchao Li ◽  
Yujie Dai ◽  
Xinhong Han ◽  
Bo Xing ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lirong Zhang ◽  
Jingjing Zhang ◽  
Lixia Xu ◽  
Zijian Zhuang ◽  
Jingjin Liu ◽  
...  

Abstract Background Therapeutic tumor vaccine (TTV) that induces tumor-specific immunity has enormous potentials in tumor treatment, but high heterogeneity and poor immunogenicity of tumor seriously impair its clinical efficacy. Herein, a novel NIR responsive tumor vaccine in situ (HA-PDA@IQ/DOX HG) was prepared by integrating hyaluronic acid functionalized polydopamine nanoparticles (HA-PDA NPs) with immune adjuvants (Imiquimod, IQ) and doxorubicin (DOX) into thermal-sensitive hydrogel. Results HA-PDA@IQ NPs with high photothermal conversion efficiency (41.2%) and T1-relaxation efficiency were using HA as stabilizer by the one-pot oxidative polymerization. Then, HA-PDA@IQ loaded DOX via π-π stacking and mixed with thermal-sensitive hydrogel to form the HA-PDA@IQ/DOX HG. The hydrogel-confined delivery mode endowed HA-PDA@IQ/DOX NPs with multiple photothermal ablation performance once injection upon NIR irradiation due to the prolonged retention in tumor site. More importantly, this mode enabled HA-PDA@IQ/DOX NPs to promote the DC maturation, memory T cells in lymphatic node as well as cytotoxic T lymphocytes in spleen. Conclusion Taken together, the HA-PDA@IQ/DOX HG could be served as a theranostic tumor vaccine for complete photothermal ablation to trigger robust antitumor immune responses.


Carbon ◽  
2013 ◽  
Vol 61 ◽  
pp. 647-649 ◽  
Author(s):  
Qingze Jiao ◽  
Liang Hao ◽  
Qingyan Shao ◽  
Yun Zhao

Synthesis ◽  
2021 ◽  
Author(s):  
Santanu Ghora ◽  
Chinnabattigalla Sreenivasulu ◽  
Gedu Satyanarayana

AbstractAn efficient, one-pot, domino synthesis of quinolines via the coupling of iodoanilines with allylic alcohols facilitated by palladium catalysis is described. The overall synthetic process involves an intermolecular Heck coupling between 2-iodoanilines and allylic alcohols, intramolecular condensation of in situ generated ketones with an internal amine functional group, and a dehydrogenation sequence. Notably, this protocol occurs in water as a green solvent. Significantly, the method exhibits broad substrate scope and is applied for the synthesis of deuterated quinolines through a deuterium-exchange process.


Author(s):  
Ivonne E. Monje ◽  
Nedher Sanchez-Ramirez ◽  
Silvia H. Santagneli ◽  
Pedro H. Camargo ◽  
Daniel Bélanger ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (44) ◽  
pp. 25051-25056 ◽  
Author(s):  
Yanhong Yin ◽  
Hengbo Zhang ◽  
Rongzhen Gao ◽  
Aili Wang ◽  
Xinxin Mao ◽  
...  

In this work, a Co–N doped carbon nanotube (CNT) catalyst was fabricated via a simple pyrolysis approach.


2018 ◽  
Vol 290 ◽  
pp. 312-321 ◽  
Author(s):  
Donghai Wei ◽  
Siyu Zhong ◽  
Hang Zhang ◽  
Xiaojia Zhang ◽  
Chao Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document