Temperature Dependence of Electrical Characterization in n+ - CdS/ p - CdTe Thin Film Solar Cells – Study of Shallow/Deep Defects

2013 ◽  
Vol 1493 ◽  
pp. 161-167
Author(s):  
Poonam Rani Kharangarh ◽  
George E Georgiou ◽  
Ken K Chin

ABSTRACTFor CdTe there is no real distinction between defects and impurities exists when non-shallow dopants are used. These dopants act as beneficial impurities or detrimental carrier trapping centers. Unlike Si, the common assumption that the trap energy level Et is around the middle of the band-gap Ei, is not valid for thin film CdTe. Trap energy levels in CdTe band-gap can distributed with wide range of energy levels above EF. To identify the real role of traps and dopants that limit the solar cell efficiency, a series of samples were investigated in thin film n+-CdS/p-CdTe solar cell, made with evaporated Cu as a primary back contact. It is well known that process temperatures and defect distribution are highly related. This work investigates these shallow level impurities by using temperature dependent current-voltage (I-V-T) and temperature dependent capacitance-voltage (C-V-T) measurements. I-V-T and C-V-T measurements indicate that a large concentration of defects is located in the depletion region. It further suggests that while modest amounts of Cu enhance the cell performance by improving the back contact to CdTe, the high temperature (greater than ∼100°C) process condition degrade device quality and reduce the solar cell efficiency. This is possibly because of the well-established Cu diffusion from the back contact into CdTe. Hence, measurements were performed at lower temperatures (T = 150K to 350K). The observed traps are due to the thermal ionization of impurity centers located in the depletion region of p-CdTe/n+-CdS junction. For our n+-CdS/p-CdTe thin film solar cells, hole traps were observed that are verified by both the measurement techniques. These levels are identical to the observed trap levels by other characterization techniques.

2018 ◽  
Vol 5 (4) ◽  
pp. 041602 ◽  
Author(s):  
Michael Powalla ◽  
Stefan Paetel ◽  
Erik Ahlswede ◽  
Roland Wuerz ◽  
Cordula D. Wessendorf ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2017 ◽  
Vol 908 ◽  
pp. 012040
Author(s):  
T Adam ◽  
T S Dhahi ◽  
M Mohammed ◽  
A M Al-Hajj ◽  
U Hashim

2021 ◽  
Author(s):  
Khalil ElKhamisy ◽  
Salah Elagooz ◽  
El-Sayed El-Rabaie ◽  
Hamdy Abdelhamid

Abstract Thin film Si solar cell and surface plasmon polaritons (SPPs) effects on solar cell efficiency, series resistance and shunt resistance are studied and analyzed in this work. The different surface plasmon polaritons (SPPs) shapes and their effects on the optical, electrical properties and therefore on the efficiency of thin film solar cell are studied in this work. This study is introduced using 3D numerical simulation results. The semiconductor and electromagnetic models are incorporated for studying the electrical and optical behaviors of the thin film solar cells, respectively. A 14.76% efficiency is obtained for triangle’ SPPs of about 1.07% of efficiency improvement compared to solar cell of SPPs free. The solar cell electrical parameters also are extracted in this work based on a single diode equivalent model. The series resistance is enhanced for solar cells of equilateral triangle SPP by 3% compared to the non-applied SPPs.


2015 ◽  
Vol 05 (02) ◽  
pp. 41-48 ◽  
Author(s):  
Amer N. J. Al-Daghman ◽  
K. Ibrahim ◽  
Naser M. Ahmed ◽  
Kareema M. Zaidan

Sign in / Sign up

Export Citation Format

Share Document