trap energy
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 11 (9) ◽  
pp. 1615-1618
Author(s):  
Yumin Song ◽  
Jun-Kyo Jeong ◽  
Seung-Dong Yang ◽  
Deok-Min Park ◽  
Yun-mi Kang ◽  
...  

This paper analyzes data retention characteristics to determine process effects on the trap energy distribution of silicon nitride in silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices. Nitride films were prepared by low-pressure chemical vapor deposition (LPCVD) and plasma-enhanced chemical vapor deposition (PECVD). PEVCD films embedded with silicon nanocrystals (Si-NCs) were also compared. The flat band voltage shift in the programmed device was measured at high temperatures to observe the thermal excitation of electrons from the nitride traps in retention mode. The trap energy distribution was extracted using the charge decay rates, and the experimental results showed that nitride fabricated by PECVD has a shallower trap than nitride fabricated by LPCVD. In nitride with Si-NCs, increased trap sites were observed in the range of 1.14 eV to 1.24 eV.


2021 ◽  
Vol 69 ◽  
pp. 43-52
Author(s):  
Pallab Kumar Das ◽  
Sudipta Sen ◽  
Nabin Baran Manik

In this paper, we have estimated the series resistance (Rs) and the trap energy (Ec) of the sandwiched type Malachite Green (MG) dye-based organic device and have also observed the influence of single-walled carbon nanotubes (SWCNT) on both of these parameters. To form the organic device, we have used Indium Tin Oxide (ITO) coated glass as the front electrode and Aluminium (Al) as a back electrode by using the spin coating technique. The values of series resistance are measured from both I-V characteristics and by utilizing Cheung Function due to the non ideal behavior of organic devices. We have also extracted the values of Rs by using H (I) versus I plot and verified the values with the measured values of Rs from the Cheung function. The extracted values of series resistance using these three processes remain consistent with each other in showing that the values of series resistance have been reduced considerably in the presence of SWCNT. The trap energy has been estimated from the steady-state current-voltage characteristics. There is a significant correlation in between series resistance and the trap energy of the organic device. The presence of Single-Walled Carbon Nanotubes reduces the trap energy from 0.086 eV to 0.057 eV. Lowering of the trap energy of the metal-organic layer interface in presence of Single Walled Carbon Nanotubes attributes to the reduction of the value of the series resistance. The extracted value of Rs decreases from 0.154 MΩ to 0.0389 MΩ in presence of SWCNT. Decrease in the value of both of these parameters in the presence of SWCNT will definitely improve the charge transport mechanism of the organic device and thereby the conductivity.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1364
Author(s):  
Yanhui Wei ◽  
Wang Han ◽  
Guochang Li ◽  
Xiaojian Liang ◽  
Zhenlu Gu ◽  
...  

Oil-impregnated insulation paper is an important part of transformers; its performance seriously affects the life of power equipment. It is of significance to study the aging characteristics and mechanism of oil-impregnated insulation paper under thermal stress for transformer status detection and evaluation. In the work, the accelerated thermal aging was carried out at 120 °C, and DP1490, DP787, and DP311 samples were selected to represent the new, mid-aging, and late-aging status of the transformer, respectively. The space charge distribution within the specimens was measured by the pulsed electro-acoustic (PEA) method and the trap parameters were extracted based on the measurement curves. Further, the aging mechanism was studied by molecular simulation technology. A typical molecular chain defect model was constructed to study the motion of cellulose molecules under thermal stress. The experimental results show that the corresponding trap energy levels are 0.54 eV, 0.73 eV, and 0.92 eV for the new specimen, the mid-aging specimen, and the late aging specimen, respectively. The simulation results show that the trapped energy at the beginning of aging is mainly determined by the loss of H atoms. The changes in trap energy in the middle stage of aging are mainly caused by the absence of some C atoms, and the trap energy level at the end of aging is mainly caused by the breakage of chemical bonds. This study is of great significance to reveal the aging mechanism of oil-impregnated insulation paper and the modification of insulation paper.


2021 ◽  
Vol 21 (3) ◽  
pp. 1904-1908
Author(s):  
Woo-Young Son ◽  
Jeong Hyun Moon ◽  
Wook Bahng ◽  
Sang-Mo Koo

We investigated the effect of a sacrificial AlN layer on the deep energy level states of 4H-SiC surface. The samples with and without AlN layer have been annealed at 1300 °C for 30 minutes duration using a tube furnace. After annealing the samples, the changes of the carbon vacancy (VC) related Z1/2 defect characteristics were analyzed by deep level transient spectroscopy. The trap energy associated with double negative acceptor (VC(2-/0)) appears at ˜0.7 eV and was reduced from ˜0.687 to ˜0.582 eV in the sacrificial AlN layer samples. In addition, the capture cross section was significantly improved from ˜2.1×10-14 to ˜3.8×10−16 cm−2 and the trap concentration was reduced by approximately 40 times.


2021 ◽  
Vol 68 (3) ◽  
pp. 1190-1195
Author(s):  
Sandip Mondal ◽  
Arvind Kumar
Keyword(s):  
Sol Gel ◽  

2021 ◽  
pp. 2008722
Author(s):  
Xingzhong Chen ◽  
Yang Li ◽  
Kai Huang ◽  
Ling Huang ◽  
Xiumei Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document