Minority Carrier Annihilation at Crystalline Silicon Interface in Metal Oxide Semiconductor Structure

2014 ◽  
Vol 1666 ◽  
Author(s):  
Jun Furukawa ◽  
Satoshi Shigeno ◽  
Shinya Yoshidomi ◽  
Tomohito Node ◽  
Masahiko Hasumi ◽  
...  

ABSTRACTWe report photo induced minority carrier annihilation at the silicon surface in a metal–oxide–semiconductor (MOS) structure using 9.35 GHz microwave transmittance measurement. 7 Ωcm n-type 500-μm-thick crystalline silicon substrate coated with 100-nm-thick thermally grown SiO2 layers was used. 0.2-cm-long Al electrode bars were formed at the top and rear surfaces. 635 nm light illumination onto the top surface caused photo induced carriers to be in one side of the silicon region of the Al electrode. Microwave transmittance system detected photo induced carriers diffused from the light illuminated region via the MOS structured region. When the bias voltage was applied at +2.0 and -2.2 V to the electrode at the top surface, the surface recombination velocity increased from 44 (initial) to 83 and 86 cm/s, respectively because of depletion region formation at rear and top surface respectively. Those voltage applications caused change in the distribution of photo induced carriers in a 0.6-cm-wide region including light illuminated, MOS structured, microwave irradiated regions.

2005 ◽  
Vol 891 ◽  
Author(s):  
Zhimei Zhu ◽  
Elena Plis ◽  
Abdenour Amtout ◽  
Pallab Bhattacharya ◽  
Sanjay Krishna

ABSTRACTThe effect of ammonium sulfide passivation on InAs/GaSb superlattice infrared detectors was investigated using two complementary techniques, namely, picosecond excitation correlation (PEC) measurement and variable-area diode array (VADA) surface recombination velocity (SRV) measurement. PEC measurements were conducted on etched InAs/GaSb superlattice mesas, which were passivated in aqueous ammonium sulfide solutions of various strengths for several durations. The PEC signal's decay time constant (DTC) is proportional to carrier lifetimes. At 77 K the PEC signal's DTC of the as-grown InAs/GaSb superlattice sample was 2.0 ns, while that of the unpassivated etched sample was reduced to 1.2 ns by the surface states at the mesa sidewalls. The most effective ammonium sulfide passivation process increased the PEC signal's DTC to 10.4 ns. However it is difficult to isolate surface recombination from other processes that contribute to the lifetime using the PEC data, therefore a VADA SRV measurement was undertaken to determine the effect of passivation on surface recombination. The obtained SRV in the depletion region of the InAs/GaSb superlattice and GaSb junction was 1.1×106 cm/s for the unpassivated sample and 4.6×105 cm/s for the passivated sample. At 77 K the highest R0A value measured in our passivated devices was 2540 W cm2 versus 0.22 W cm2 for the unpassivated diodes. The results of the lifetime, the SRV and the R0A measurements indicate that ammonium sulfide passivation will improve the performance of InAs/GaSb superlattice infrared detectors.


Sign in / Sign up

Export Citation Format

Share Document