First-principles Studies of Phase Stability and the Neutral Atomic Vacancies in LiNbO3, NaNbO3 and KNbO3
AbstractWe overall evaluated the enthalpies of formation and the formation energies of neutral vacancies in ANbO3 (A = Li, Na, K) using a plane-wave pseudopotential method within a density functional formalism. The LiNbO3 phase with the LiNbO3-type structure was confirmed to have lower enthalpy of formation than that with perovskite- or ilmenite-type structure. The NaNbO3 (R3c) and KNbO3 (Bmm2 and R3m) phases with the lowest symmetry were found to have the lowest enthalpy of formation. The formation energy of a A vacancy was found to be the lowest under an oxidizing atmosphere and that of an O vacancy was found to be the lowest under a reducing atmosphere. The formation energy of a Nb vacancy was the highest under both oxygen-rich and -poor conditions. These results are in agreement with the empirical rule that B site defects in perovskite-type oxide do not exist.