Hydrogen Desorption from MgH2 Based Nano-Micro Composites

2006 ◽  
Vol 971 ◽  
Author(s):  
Ennio Bonetti ◽  
Anna Lisa Fiorini ◽  
Luca Pasquini ◽  
Nadica Abazovic ◽  
Amelia Montone ◽  
...  

ABSTRACTThe microstructure and hydrogen sorption behaviour of MgH2 based nano-hydrides with different additives prepared by ball milling and inert gas condensation has been investigated by XRD, Differential Scanning Calorimetry and Mechanical Spectroscopy. Preliminary results on materials with similar composition and different nanostructures show that suitable mechanical processing and additive additions induce in the nanostructured composites tailored channels for improved ab/de-sorption kinetics at reduced temperatures.

2007 ◽  
Vol 1042 ◽  
Author(s):  
Ennio Bonetti ◽  
Elsa Callini ◽  
Amelia Montone ◽  
Luca Pasquini ◽  
Emanuela Piscopiello ◽  
...  

AbstractInert gas condensation was employed to prepare nanoparticles of Mg and MgH2 which morphology, clustering degree and structural stability have been investigated by X-ray diffraction and electron microscopy. Thermodynamic functional properties of the Mg and MgH2 nanostructured samples were investigated by high pressure differential scanning calorimetry. Some specific features of the morphology of the samples prepared by inert gas condensation are compared with powders obtained by ball milling through desorption kinetics behavior.


2010 ◽  
Vol 10 (5) ◽  
pp. 3667-3670 ◽  
Author(s):  
Il-Suk Kang ◽  
Hyun-Sang Seo ◽  
Deuk-Han Kim ◽  
Taek-Yeong Lee ◽  
Jun-Mo Yang ◽  
...  

1981 ◽  
Vol 106 (1-3) ◽  
pp. A170
Author(s):  
J. Mühlbach ◽  
E. Recknagel ◽  
K. Sattler

ACS Nano ◽  
2016 ◽  
Vol 10 (4) ◽  
pp. 4684-4694 ◽  
Author(s):  
Junlei Zhao ◽  
Ekaterina Baibuz ◽  
Jerome Vernieres ◽  
Panagiotis Grammatikopoulos ◽  
Ville Jansson ◽  
...  

2006 ◽  
Vol 20 (01) ◽  
pp. 37-47
Author(s):  
LUBNA RAFIQ SHAH ◽  
BAKHTYAR ALI ◽  
S. K. HASANAIN ◽  
A. MUMTAZ ◽  
C. BAKER ◽  
...  

We present magnetic measurements on iron ( Fe ) nanoparticles in the size range 10–30 nm produced by the Inert Gas Condensation process (IGC). Structural characterization studies show the presence of a core/shell structure, where the core is bcc Fe while the surface layer is Fe -oxide. Analysis of the magnetic measurements shows that the nanoparticles display very large uniaxial anisotropy, K eff ≈3 - 4 × 106 erg/cc. The observed room temperature coercivities lie in the range ≈600 – 973 Oe , much larger than those expected from the Stoner–Wohlfarth model using the bulk iron anisotropy. It can be inferred from the coercivity variation with the particle size that there is a general trend of the coercivity increasing with size, culminating finally in a decrease for high sizes (30 nm) possibly due to the onset of non-coherent magnetization reversal processes.


2019 ◽  
Vol 79 ◽  
pp. 02002
Author(s):  
Shangshu Wu ◽  
Zhou Yu ◽  
Junjie Wang ◽  
Hanxin Zhang ◽  
Chaoqun Pei ◽  
...  

The preparation of nanocrystalline aluminum (NC Al) was conducted in two steps. After the NC Al powder was synthesized by an Inert gas condensation (IGC) method in a helium atmosphere of 500 Pa, the NC Al powder was in-situ compacted into a pellet with a 10 mm diameter and 250 μm-300 μm thickness in a high vacuum (10-6 Pa-10-7 Pa) at room temperature. The NC Al samples were not exposed to air during the entire process. After the pressure reached 6 GPa, the relative density could reach 99.83%. The results showed that the grain size decreased with the increased of in-situ forming pressure. The NC Al samples present obvious ductile fracture, and the tensile properties were greatly changed with the increase of forming pressure.


2015 ◽  
Vol 151 ◽  
pp. 275-281 ◽  
Author(s):  
Maria Benelmekki ◽  
Jerome Vernieres ◽  
Jeong-Hwan Kim ◽  
Rosa-E. Diaz ◽  
Panagiotis Grammatikopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document