Advances in the Characterization of Particle Size Distributions of Abrasive Particles used in CMP

2007 ◽  
Vol 991 ◽  
Author(s):  
Mungai Kamiti ◽  
Stacey Popadowski ◽  
Edward E. Remsen

ABSTRACTThe use of density gradient stabilized centrifugal sedimentation (disc centrifugation) for the characterization of abrasive particles in CMP slurries is reported. For slurries prepared with ceria and colloidal silica abrasives, the technique is demonstrated as capable of providing highly repeatable analyses of the abrasive's apparent particle size distribution (PSD). The addition of water soluble organic additives to the slurries is shown to produce large shifts in the apparent PSD relative to the PSD of the pure abrasive particles. Particle-additive interactions driving the shift in apparent PSD could not be interpreted with confidence due to the lack of accurate densities for particle-abrasive complexes formed in the slurry. To address this problem, sucrose density gradients prepared using H2O and D2O were tested as spin fluids of different densities to analyze a colloidal silica standard with a narrow PSD. Preliminary results comparing experimental disc centrifuge data with theoretical simulations of the disc sedimentation pattern suggest that this technique can potentially characterize both the particle diameter and density of abrasive particles in a CMP slurry.

Geoderma ◽  
2006 ◽  
Vol 134 (3-4) ◽  
pp. 373-385 ◽  
Author(s):  
J.G.V. Miranda ◽  
E. Montero ◽  
M.C. Alves ◽  
A. Paz González ◽  
E. Vidal Vázquez

2020 ◽  
Author(s):  
Christoph Mahnke ◽  
Stephan Borrmann ◽  
Ralf Weigel ◽  
Francesco Cairo ◽  
Armin Afchine ◽  
...  

<p>During the StratoClim 2017 measurement campaign in Nepal, within the Asian Monsoon Anticyclone (AMA), measurements of the aerosols’ microphysical properties up to UT/LS altitudes were successfully completed with a modified version of the commercially available (Droplet Measurement Technologies Inc.) aerosol spectrometer UHSAS-A. Technical rearrangements of parts of the UHSAS-A were developed and implemented, which improve the instrument’s measuring performance and extend its airborne application range from around 12 km altitude to the extreme ambient conditions in the stratosphere at heights of 20 km. The measurement techniques used for this purpose were characterized by laboratory experiments.</p><p>Within the AMA region, extreme values of the particle mixing ratio (PMR) ranging between 6 mg<sup>-1</sup> and about 10000 mg<sup>-1</sup> were found with the UHSAS-A (particle diameter range: 65 nm to 1000 nm). The median of the PMR for all research flights was about 1300 mg<sup>-1</sup> close to the ground. Within tropospheric altitudes, the PMR was highly variable and median values between 70 mg<sup>-1</sup> and 400 mg<sup>-1</sup> were observed.  At levels of 370 K potential temperature, the median PMR maximally reaches about 700 mg<sup>-1 </sup>while the 1 Hz resolved measurements show values up to about 10000 mg<sup>-1</sup>. Between 450 K and 475 K, median PMR between 40 mg<sup>-1</sup> and 50 mg<sup>-1</sup> were observed. The aerosol size distributions (measured by the UHSAS-A) were extended by an additional diameter size bin obtained from the 4-channel Condensation Particle counting System (COPAS), i.e. for aerosol diameter between 10 nm and 65 nm.</p><p>The UHSAS-A measured aerosol particle size distributions were compared with balloon-borne measurements (by T. Deshler et al., Dep. of Atmospheric Science, University of Wyoming, USA) at altitudes of up to 20 km. These show that the size distributions measured during the StratoClim 2017 campaign fit well within the range of the balloon-borne measurements during the Asian Monsoon season over India (Hyderabad) in 2015 and the USA (Laramie) in 2013. Further analyses of measured particle size distributions by means of backscatter ratio show remarkable consistency with CALIOP satellite observations of the ATAL during the StratoClim mission period.</p>


1995 ◽  
Vol 10 (7) ◽  
pp. 1644-1652 ◽  
Author(s):  
Abhijit S. Gurav ◽  
Toivo T. Kodas ◽  
Jorma Joutsensaari ◽  
Esko I. Kauppincn ◽  
Riitta Zilliacus

Gas-phase particle size distributions and lead loss were measured during formation of (Bi,Pb)-Sr-Ca-Cu-O and pure PbO particles by spray pyrolysis at different temperatures. A differential mobility analyzer (DMA) in conjunction with a condensation particle counter (CPC) was used to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. For (Bi,Pb)-Sr-Ca-Cu-O, as the processing temperature was raised from 200 to 700 °C, the number average particle size decreased due to metal nitrate decomposition, intraparticle reactions forming mixed-metal oxides and particle densification. The geometric number mean particle diameter was 0.12 μm at 200 °C and reduced to 0.08 and 0.07 μm, respectively, at 700 and 900 °C. When the reactor temperature was raised from 700 and 800 °C to 900 °C, a large number (∼107 no./cm3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls. Particles made at temperatures up to 700 °C maintained their initial stoichiometry over the whole range of particle sizes monitorcd; however, those made at 800 °C and above were heavily depleted in lead in the size range 0.5–5.0 μm. The evaporative losses of lead oxide from (Bi,Pb)-Sr-Ca-Cu-O particles were compared with the losses from PbO particles to gain insight into the pathways involved in lead loss and the role of intraparticle processes in controlling it.


2001 ◽  
Vol 65 (5) ◽  
pp. 1361-1367 ◽  
Author(s):  
Adolfo N. D. Posadas ◽  
Daniel Giménez ◽  
Marco Bittelli ◽  
Carlos M. P. Vaz ◽  
Markus Flury

Sign in / Sign up

Export Citation Format

Share Document