particle sampling
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3355
Author(s):  
Andrew J. Wheeler ◽  
Aaron Lim ◽  
Felix Butschek ◽  
Luke O’Reilly ◽  
Kimberley Harris ◽  
...  

The “Little MonSta” benthic lander array consists of 8 ROV-deployable (remotely operated vehicle) instrumented lander platforms for monitoring physical and chemical oceanographic properties and particle sampling developed as part of the MMMonKey_Pro program (mapping, modeling, and monitoring key processes and controls in cold-water coral habitats in submarine canyons). The Little MonStas offer flexible solutions to meet the need to monitor marine benthic environments during a historically unprecedented time of climate-driven oceanic change, develop an understanding of meso-scale benthic processes (natural and man-made), and to calibrate geological environmental archives. Equipped with acoustic Doppler current profilers (ADCPs), sediment traps, nylon settlement plates and homing beacons, the compact and upgradable lander platforms can be deployed by ROVs to precise locations in extreme terrains to a water depth of 3000 m. The array allows cluster-monitoring in heterogeneous environments or simultaneous monitoring over wider areas. A proof-of-concept case study was presented from the cold-water coral habitable zone in the upper Porcupine Bank Canyon, where the Little MonStas collected 868.8 h of current speed, direction, temperature, and benthic particulate flux records, as well as 192 particle samples subsequently analyzed for particular organic carbon (POC), lithic sediment, live foraminifera, and microplastics. The potential to upgrade the Little MonStas with additional sensors and acoustic releases offers greater and more flexible operational capabilities.


Author(s):  
R. Yarahmadi ◽  
F. Bokharaei-Salim ◽  
S. Soleimani-Alyar ◽  
P. Moridi ◽  
O. Moradi-Moghaddam ◽  
...  

AbstractThe outbreak of SARS-CoV-2 (COVID-19) has attracted much attention to study its possible presence and airborne transmission. The possibility of COVID-19 airborne transmission in indoor environments is debatable. The present study examined the concentration of viral RNA-containing particles produced directly or indirectly by breathing or coughing of confirmed COVID-19 patients or by carriers without symptoms. Some studies do not accept this method of transmission (COVID-19 airborne transmission). The present study aimed to measure the possible exposure of health care personnel to SARS-CoV-2 particles that may have been suspended in the air to respond to the hypothesis of COVID-19 airborne transmission. Airborne particle sampling was performed using impingement method based on NIOSH (chapter BA) and ASHRAE. Selection of sampling sections was in line with the WHO guidelines. The samples were analyzed using RT-PCR technique. Based on the given results, airborne particles of COVID-19 may present in the air and affect the health of hospital personnel. In fact, the analysis of gene expression in ambient conditions and thereby aerosol transmission of SARS-CoV-2 through air is possible and may lead to occupational exposure of health care personnel. Furthermore, it was found that airborne emission of COVID-19 through the breathing zone of patients, particularly in ICU wards with confirmed cases of COVID-19, may be higher than in other ICU wards. Also, the demonstrated results showed that there is a possibility of reaerosolization (reintroduction) of previously airborne SARS-CoV-2 particles into the atmosphere due to health care personnel frequently walking between different wards and stations of ICU.


2020 ◽  
Vol 164 ◽  
pp. 338-351
Author(s):  
Maiqi Xiang ◽  
Martin Morgeneyer ◽  
Florian Philippe ◽  
Maheandar Manokaran ◽  
Christophe Bressot

2020 ◽  
Vol 92 (9) ◽  
pp. 1330-1330
Author(s):  
F. Kunze ◽  
S. Kuns ◽  
T. Hülser ◽  
H. Wiggers ◽  
S. M. Schnurre

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 582
Author(s):  
Michal Vojtisek-Lom ◽  
Jonáš Jirků ◽  
Martin Pechout

The paper summarizes exhaust emissions measurements on two diesel-electric locomotives and one diesel-hydraulic railcar, each tested for several days during scheduled passenger service. While real driving emissions of buses decrease with fleet turnaround and have been assessed by many studies, there are virtually no realistic emissions data on diesel rail vehicles, many of which are decades old. The engines were fitted with low-power portable online monitoring instruments, including a portable Fourier Transform Infra Red (FTIR) spectrometer, online particle measurement, and in two cases with proportional particle sampling systems, all installed in engine compartments. Due to space constraints and overhead electric traction lines, exhaust flow was computed from engine operating data. Real-world operation was characterized by relatively fast power level transitions during accelerations and interleaved periods of high load and idle, and varied considerably among service type and routes. Spikes in PM emissions during accelerations and storage of PM in the exhaust were observed. Despite all engines approaching the end of their life, the emissions per passenger-km were very low compared to automobiles. Tests were done at very low costs with no disruption of the train service, yielded realistic data, and are also applicable to diesel-hydraulic units, which cannot be tested at standstill.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 430
Author(s):  
Edgar Figueiras ◽  
David N. Olivieri ◽  
Angel Paredes ◽  
Humberto Michinel

Numerical simulation experiments are of great importance for research and education in Physics. They can be greatly aided by proper graphical representations, especially for spatio-temporal dynamics. In this contribution, we describe and provide a novel Javascript-based library and cloud microservice—QMwebJS—for the visualization of the temporal evolution of three-dimensional distributions. It is an easy to use, web-based library for creating, editing, and exporting 3D models based on the particle sampling method. Accessible from any standard browser, it does not require downloads or installations. Users can directly share their work with other students, teachers or researchers by keeping their models in the cloud and allowing for interactive viewing of the spatio-temporal solutions. This software tool was developed to support quantum mechanics teaching at an undergraduate level by plotting the spatial probability density distribution given by the wavefunction, but it can be useful in different contexts including the study of nonlinear waves.


Author(s):  
Rikke Bramming Jørgensen

Abstract Background The aim of this study is to make a comparison of a new small sized nanoparticle monitoring instrument, Nanoscan  SMPS, with more traditional large size instruments, known to be precise and accurate [Scanning Mobility Particle Sampler (SMPS) and Fast Mobility Particle Sizer (FMPS)], and with an older small size instrument with bulk measurements of 10–1000 nm particles (CPC3007). The comparisons are made during simulated exposure scenarios relevant to occupational hygiene studies. Methods Four scenarios were investigated: metal inert gas (MIG) welding, polyvinyl chloride (PVC) welding, cooking, and candle-burning. Ratios between results are compaed and Pearsson correlations analysis was performed. Results The highest correlation between the results is found between Nanoscan and SMPS, with Pearsson correlation coefficients above 0.9 for all scenarios. However, Nanoscan tended to overestimate the results from the SMPS; the ratio between the UFP concentrations vary between 1.44 and 2.01, and ratios of total concentrations between 1.18 and 2.33. CPC 3007 did not show comparable results with the remaining instruments. Conclusion Based on the results of this study, the choice of measurement equipment may be crucial when evaluating measurement results against a reference value or a limit value for nanoparticle exposure. This stresses the need for method development, standardisation, and harmonisation of particle sampling protocols before reference values are introduced. Until this is established, the SMPS instruments are the most reliable for quantification of the concentrations of UFP, but in a more practical occupational hygiene context, the Nanoscan SMPS should be further tested.


Sign in / Sign up

Export Citation Format

Share Document