Theoretical Research of Loop Formation Process in Conducting Polymers

2008 ◽  
Vol 1091 ◽  
Author(s):  
Nigora Turaeva ◽  
Boris Oksengendler

AbstractConducting polymers promise a wider range of successful devices than traditional semiconductors. Differing from the traditional semiconductors in conducting polymers the topology of the system may be significant. Some of the important features such optic and electric properties can be changed largely by loop formation. In this work the loop formation process in conducting polymers has been considered by means of the Green-function method for the electronic spectra fixing. It was shown that at the changing of connectivity of quasi-one dimensional simple polymer strand due to the loop formation two local electronic states are appeared in the electronic spectra of the system. We supposed such model can be important for optic properties of such polymer systems with loops, increase the reaction ability of local loop area, loop stabilization due to the electron-conformational interaction in conducting polymers.

1970 ◽  
Vol 8 (13) ◽  
pp. 1069-1071 ◽  
Author(s):  
F. Flores ◽  
F. Garcia-Moliner ◽  
J. Rubio

1996 ◽  
Vol 03 (02) ◽  
pp. 1253-1257 ◽  
Author(s):  
HUI ZHANG ◽  
SHULIN CONG

The Green function method and the chemisorption theory of Einstein and Schrieffer are used to calculate the chemisorption energies of O and CO on the multilayer segregated Ni-Cu disordered binary alloy within the many-coupled self-consistent coherent potential approximation. In general cases, the chemisorption-induced surface segregation can change the surface component and the chemisorption property to varying degrees. When the mutual influence of chemisorption and multilayer segregation is considered, the changes appear slightly mild. The chemisorption energy for O/Ni-Cu (CO/Ni-Cu) depends sensitively on O(CO) coverage θ, and decreases with increasing θ.


The difference in the density of states in energy in a dilute solid solution, relative to its value in the pure solvent, is derived. It is shown to be simply related to the energy level shift induced by virtual electron scattering off the solute ions and to the density of states in the pure solvent. The result, which follows from a brief physical argument, is shown to be completely equivalent to that obtained from a far more laborious derivation by means of Green function techniques. An application to the determination of the specific heat of dilute metallic solid solutions is given and a former incomplete result, as derived by Jones from an approximate evaluation of the Green function method, is amended.


Sign in / Sign up

Export Citation Format

Share Document