First-principles Study of the Electronic Structure and Local Moment Interactions in PuAm Alloy

2008 ◽  
Vol 1104 ◽  
Author(s):  
Myung Joon Han ◽  
Xiangang Wan ◽  
Sergej Y Savrasov

AbstractExpected to provide a clue about the origin of zero moment in the bulk phase of Plutonium, Pu1-xAmx alloys have attracted a great attention, in which upon doping the system transforms from the Kondo lattice to the diluted impurity limit. To understand the electronic structure and the magnetic properties of Pu in different crystal environments, we performed fully self-consistent first-principles calculations of the PuAm system based on the local density approximation (LDA) combined with static (LDA+U) and dynamic corrections (LDA+DMFT) for on-site electron correlations. The electronic structure strongly depends on the level of approximation for correlation effects. The exchange interactions between Pu 5f electrons and the Kondo screening strength were estimated and compared, which provide a new insight to Pu magnetism.

1994 ◽  
Vol 357 ◽  
Author(s):  
M. W. Finnis ◽  
C. Kruse ◽  
U. SchÖnberger

AbstractWe discuss the recent first principles calculations of the properties of interfaces between metals and oxides. This type of calculation is parameter-free, and exploits the density functional theory in the local density approximation to obtain the electronic structure of the system. At the same time the equilibrium atomic structure is sought, which minimises the excess energy of the interface. Up to now calculations of this type have been made for a few model interfaces which are atomically coherent, that is with commensurate lattices. Examples are Ag/MgO and Nb/Al2O3. In these cases it has been possible to predict the structures observed by high resolution electron microscopy. The calculations are actually made in a supercell geometry, in which there are alternating nanolayers of metal and ceramic. Because of the effectiveness of metallic screening in particular, the interfaces between the nanolayers do not interfere much with each other.Besides the electronic structure of the interface, such calculations have provided values of the ideal work of adhesion. Electrostatic image forces in conjunction with the elementary ionic model provide a simple framework for understanding the results.An important role of such calculations is to develop intuition about the nature of the bonding, including the effects of charge transfer, which has formerly only been described in an empirical way. It may then be possible to build atomistic models of the metal/ceramic interaction which have a sound physical basis and can be calibrated against ab initio results. Simpler models are necessary if larger systems, including misfit dislocations and other defects, are to be simulated, with a view to understanding the atomic processes of growth and failure. Another area in which ab initio calculations can be expected to contribute is in the chemistry of impurity segregation and its effect at interfaces. Such theoretical tools are a natural partner to the experimental technique of high resolution electron energy loss spectroscopy for studying the local chemical environment at an interface.


2002 ◽  
Vol 748 ◽  
Author(s):  
Yoshinori Konishi ◽  
Michio Ohsawa ◽  
Yoshiyuki Yonezawa ◽  
Yoshiya Tanimura ◽  
Toyohiro Chikyow ◽  
...  

ABSTRACTThe prospect of lattice structure and ferroelectricity of SnTiO3 have been studied by first-principles calculations within local density approximation. The results showed that the SnTiO3 has the minimum total energy within almost tetragonal perovskite structure of a=b=3.80 Å, c=4.09 Å. The calculated electronic structure of SnTiO3 resembles that of PbTiO3 because the Ti 3d states, Sn 5s and 5p states hybridize with the O 2p orbitals. The moment of spontaneous polarization of SnTiO3 was estimated as 73 μ C/cm2, which is as large as that of PbTiO3.


1989 ◽  
Vol 159 ◽  
Author(s):  
Erik C. Sowa ◽  
A. Gonis ◽  
X.-G. Zhang

ABSTRACTWe present first-principles calculations of the densities of states (DOS's) of unrelaxed and relaxed twist and tilt grain boundaries (GB's) in Cu. The relaxed configurations were obtained through the use of the Embedded Atom Method (EAM), while the DOS's were calculated using the real-space multiplescattering theory (RSMST) approach recently introduced in the literature. The DOS's of GB's are compared against those of bulk materials as well as against one another. Although the RSMST calculations are still not self-consistent, these comparisons allow us to verify certain expected trends in the DOS's, and to verify the usefulness and reliability of our method.


2014 ◽  
Vol 52 (12) ◽  
pp. 1025-1029
Author(s):  
Min-Wook Oh ◽  
Tae-Gu Kang ◽  
Byungki Ryu ◽  
Ji Eun Lee ◽  
Sung-Jae Joo ◽  
...  

2019 ◽  
Vol 7 (9) ◽  
pp. 4971-4976 ◽  
Author(s):  
Tongtong Wang ◽  
Xiaosong Guo ◽  
Jingyan Zhang ◽  
Wen Xiao ◽  
Pinxian Xi ◽  
...  

We give a systematic study of the HER catalytic activity of transition metal doped NiS2 by first principles calculations and experiments.


2020 ◽  
Vol 77 (7) ◽  
pp. 587-591
Author(s):  
Rundong Liang ◽  
Xiuwen Zhao ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Xiaobo Yuan ◽  
...  

2015 ◽  
Vol 56 (3) ◽  
pp. 492-496 ◽  
Author(s):  
A. A. Lavrentyev ◽  
B. V. Gabrelian ◽  
P. N. Shkumat ◽  
I. Ya. Nikiforov ◽  
O. V. Parasyuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document