Surface Mechanical Properties of Ti Alloys Produced by Excimer Laser Mixing of Ti on AiSi 304 Stainless Steel

1988 ◽  
Vol 140 ◽  
Author(s):  
T. R. Jervis ◽  
J-P. Hirvonen ◽  
M. Nastasi ◽  
T. G. Zocco ◽  
J. A. Martin ◽  
...  

AbstractWe have investigated the properties of surface alloys of Ti formed by excimer laser melting and mixing of Ti overlayers on AISI 304 stainless steel substrates.The thickness of the initial Ti surface layers and the fluence and number of pulses used to mix the surface were varied toinvestigate a broad range of processing conditions. Samples were uniformly translated at different speeds under repetitive pulses of homogenized laser radiation at 308 nm to vary the number of pulses incident on the sample. We investigated the surface structure and composition, the wear and friction behavior, and the surface hardness of the resulting alloys.The extent of mixing is observed by Rutherford backscattering spectroscopy to be proportional to the number of pulses incident on the sample. Amorphous surface layers are formed at some mixing levels with a composition which indicates that Ti substitutes for Fe in the stainless steel on a one to one basis. Incorporation of C from surface and interface contamination is observed but at a level much below that found in comparable ion implanted materials.Friction coefficient measurements indicate that there exists an optimum level of mixing for each layer thickness. Excessive mixing degrades both the coefficient of friction and the wear performance in dry sliding tests.As with the tribological measurements, the surface hardness showed a dependence on amount of mixing. The surface hardness of the as deposited samples was higher than that of the laser mixed samples, initially decreased with mixing, and finally increased with further mixing.

1988 ◽  
Vol 128 ◽  
Author(s):  
T. R. Jervis ◽  
J-P. Hirvonen ◽  
M. Nastasi ◽  
T. G. Zocco ◽  
J. A. Martin ◽  
...  

ABSTRACTWe have investigated the properties of surface alloys of Ti formed by excimer laser melting and mixing of Ti overlayers on AISI 304 stainless steel substrates.The thickness of the initial Ti surface layers and the fluence and number of pulses used to mix the surface were varied to investigate a broad range of processing conditions. Samples were uniformly translated at different speeds under repetitive pulses of homogenized laser radiation at 308 nm to vary the number of pulses incident on the sample. We investigated the surface structure and composition, the wear and friction behavior, and the surface hardness of the resulting alloys.The extent of mixing is observed by Rutherford backscattering spectroscopy to be proportional to the number of pulses incident on the sample. Amorphous surface layers are formed at some mixing levels with a composition which indicates that Ti substitutes for Fe in the stainless steel on a one to one basis. Incorporation of C from surface and interface contamination is observed but at a level much below that found in comparable ion implanted materials.Friction coefficient measurements indicate that there exists an optimum level of mixing for each layer thickness. Excessive mixing degrades both the coefficient of friction and the wear performance in dry sliding tests.As with the tribological measurements, the surface hardness showed a dependence on amount of mixing. The surface hardness of the as deposited samples was higher than that of the laser mixed samples, initially decreased with mixing, and finally increased with further mixing.


1988 ◽  
Vol 3 (6) ◽  
pp. 1104-1107 ◽  
Author(s):  
T. R. Jervis ◽  
J. -P. Hirvonen ◽  
M. Nastasi

Dry sliding friction measurements made on titanium layers evaporated on AISI 304 stainless steel in the as-deposited and excimer laser mixed form show a dependence on the film thickness and the amount of mixing. The effect of laser mixing is dependent on the incident fluence with high fluences and/or large numbers of pulses producing surfaces with poor frictional properties. The optimum total fluence depends on the thickness of the surface layer, a result consistent with thorough mixing of the alloyed layer without the surface damage that results from large numbers of pulses.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Sign in / Sign up

Export Citation Format

Share Document