Thermal Annealing Study of High-TC Ybacuo and Bisrcacuo Superconducting Wires

1989 ◽  
Vol 169 ◽  
Author(s):  
Y. D. Yao ◽  
J. W. Chen ◽  
Y. Y. Chen ◽  
W. S. Pern ◽  
H. A. Yong ◽  
...  

AbstractHigh‐T YBaCuO and BiSrCaCuO Superconducting wires have been fabricated by powder metallurgy technique. Copper and silver tubes were used as the external jackets. Thermal annealing treatments for all the wire‐type samples were performed between 773 K and 1223 K. Both electrical and magnetization studies show that the superconducting properties can be improved after properly thermal annealing these samples with silver jacket. Our experimental results show that proper thermal annealing treatment can enhance the intragrain critical current density more than 100 times; however, the intergrain critical current density improves only a few times.

2011 ◽  
Vol 324 ◽  
pp. 241-244 ◽  
Author(s):  
R. Mawassi ◽  
R. Awad ◽  
Mohamad Roumie ◽  
M. Kork ◽  
I. Hassan

The major limitation of Bi-system superconductor applications is the intergrain weak links and weak flux pinning capability producing low critical current density of the Bibased phases. In order to enhance these characteristics and other superconducting properties, effective flux pinning centers are introduced into high temperature superconductors. In this work, different weight percentages of ZnO nano oxide were introduced at the final stage of the Bi1.8Pb0.4Sr2Ca2Cu3O10-y superconductor preparation process. Phase characterization was completed by X-ray diffraction (XRD). Exact constitution of the samples was determined using particle induced X-ray emission (PIXE). Granular and microstructure were investigated using scanning electron microscopy (SEM). Electrical resistivity as function of the temperature was carried to evaluate the relative performance of samples, and finally, E-J characteristic curves were obtained at 77K. Using 0.4 ZnO weight percentage, the electrical and granular properties were greatly enhanced, indicating more efficient pinning mechanisms. A critical current density of 949 A/cm2 was obtained which represents more than twice the value obtained for the pure sample (Jc= 445 A/cm2).


1991 ◽  
Vol 175 (1-2) ◽  
pp. 33-41 ◽  
Author(s):  
A. Sanchez ◽  
D.-X. Chen ◽  
J.S. Muñoz ◽  
Y.-Z. Li

Sign in / Sign up

Export Citation Format

Share Document