Homoepitaxial Alignment of SrTiO3 Thin Films Prepared by Metallo-Organic Decomposition.

1991 ◽  
Vol 249 ◽  
Author(s):  
Gabriel Braunstein ◽  
Gustavo R. Paz-Pujalt

ABSTRACTWe demonstrate the homoepitaxial growth of SrTiO3 prepared by the method of metallo-organic decomposition (MOD). Thin films of SrTiO3 are prepared by spin-coating and thermal decomposition of a solution of metallo-organic compounds, on single crystal, <100> oriented, SrTiO3 substrates and subsequently heat treated at temperatures ranging from 650°C to 1100°C for 30 minutes. Heat treatment at 1100°C results in the formation of single-crystal SrTiO3, perfectly aligned with respect to the underlying substrate.Ion-channeling analysis shows that the transformation to singlecrystal material proceeds epitaxially from the coating-substrate interface towards the surface of the sample. Transmission electron microscopy (TEM) studies of partially regrown samples reveal two distinct phases: an epitaxially aligned single-crystal phase, adjacent to the substrate, and a polycrystalline phase on top. On the basis of these observations, it is proposed that the crystallization of the MOD films involves the competition between two processes: layer-by-layer solid phase epitaxy and random nucleation and growth of crystallites. Layerby- layer epitaxy is the predominant crystallization mechanism unless it is inhibited by extrinsic factors like the contamination of the interface between the MOD film and the single-crystal substrate.


2006 ◽  
Vol 89 (23) ◽  
pp. 232906 ◽  
Author(s):  
X. Y. Zhou ◽  
T. Heindl ◽  
G. K. H. Pang ◽  
J. Miao ◽  
R. K. Zheng ◽  
...  




1993 ◽  
Vol 317 ◽  
Author(s):  
Gabriel Braunstein ◽  
Gustavo R. Paz-Pujalt ◽  
James F. Elman

ABSTRACTWe demonstrate the heteroepitaxial growth of thin films of SrTiO3 prepared by the method of Metallo-organic decomposition on LaAlO3 substrates. The SrTiO3 films are prepared by spin coating and thermal decomposition of a solution of Metallo-organic precursors on single-crystal, <100> oriented, LaAK>3 substrates. Subsequent heat treatment at 1100 – 1200 °C for 1 h results in the epitaxial alignment of the SrTiO3 films with respect to the LaAlO3 substrate.The degree of alignment of the films appears to depend on their thickness, with thinner films showing better alignment (as determined by ion-channeling measurements). This behavior is interpreted as a result of the competition between solid-phase epitaxy and random nucleation, observed during the crystallization of films prepared by Metallo-organic decomposition. However, since thinner films have been prepared by dilution of the precursor solution, there is also the possibility that the concentration of the precursor solution may influence the crystallization behavior of the films.The potential influence of the precursor formulation on the crystallization mechanism is discussed.



2005 ◽  
Vol 86 (21) ◽  
pp. 212904 ◽  
Author(s):  
D. Y. Wang ◽  
Y. Wang ◽  
X. Y. Zhou ◽  
H. L. W. Chan ◽  
C. L. Choy


2011 ◽  
Vol 318 (1) ◽  
pp. 516-518 ◽  
Author(s):  
T. Nakamura ◽  
K. Masuko ◽  
A. Ashida ◽  
T. Yoshimura ◽  
N. Fujimura




1986 ◽  
Vol 77 ◽  
Author(s):  
John R. Abelson ◽  
Thomas W. Sigmon

ABSTRACTTransmission channeling Rutherford scattering of MeV ions is one of the only techniques which can probe the atomic registry at a “buried” internal interface between a thin film and single-crystal substrate. Interfacial intermixing, dislocations, and reconstruction can be observed at concentrations above ∼ 3×1015 atoms/cm. The physical basis for this measurement is the “flux-peaking” effect, which is well known in conventional ion channeling as a method to determine the lattice location of dilute impurities. Transmission channeling is conceptually similar, but the scattering arises from the interface at the exit side of a thin single crystal sample rather than from a volume effect.In this work, we apply transmission channeling to measure the low temperature intermixing between Pt and Si. In a previous study, we suggested that a disordered interface forms prior to crystalline suicide formation. The present results are a quantitative measurement of the area density of Si which intermixes with Pt at 150°C. Experiments are performed using 80A Pt layers e-béam deposited onto 1–2μm thick single crystals of Si(100) and (111) following various interfacial cleaning procedures. We find that >1×1016 Si atoms/cm2 are displaced from their lattice sites after Pt deposition, increasing to ∼2×1016/cm2 upon annealing to 150°C. The room temperature intermixing of >6 monolayers of Si is large, but not inconsistent with existing studies of the Pt - Si reaction. The transmission channeling measurement includes any Si segregated at grain boundaries or the free surface as well as the interface. No systematic differences are observed as a function of substrate orientation or cleaning procedure.





Sign in / Sign up

Export Citation Format

Share Document