Atomic Registry at the Pt-Si Interface Studied by Transmission Channeling RBS

1986 ◽  
Vol 77 ◽  
Author(s):  
John R. Abelson ◽  
Thomas W. Sigmon

ABSTRACTTransmission channeling Rutherford scattering of MeV ions is one of the only techniques which can probe the atomic registry at a “buried” internal interface between a thin film and single-crystal substrate. Interfacial intermixing, dislocations, and reconstruction can be observed at concentrations above ∼ 3×1015 atoms/cm. The physical basis for this measurement is the “flux-peaking” effect, which is well known in conventional ion channeling as a method to determine the lattice location of dilute impurities. Transmission channeling is conceptually similar, but the scattering arises from the interface at the exit side of a thin single crystal sample rather than from a volume effect.In this work, we apply transmission channeling to measure the low temperature intermixing between Pt and Si. In a previous study, we suggested that a disordered interface forms prior to crystalline suicide formation. The present results are a quantitative measurement of the area density of Si which intermixes with Pt at 150°C. Experiments are performed using 80A Pt layers e-béam deposited onto 1–2μm thick single crystals of Si(100) and (111) following various interfacial cleaning procedures. We find that >1×1016 Si atoms/cm2 are displaced from their lattice sites after Pt deposition, increasing to ∼2×1016/cm2 upon annealing to 150°C. The room temperature intermixing of >6 monolayers of Si is large, but not inconsistent with existing studies of the Pt - Si reaction. The transmission channeling measurement includes any Si segregated at grain boundaries or the free surface as well as the interface. No systematic differences are observed as a function of substrate orientation or cleaning procedure.

1991 ◽  
Vol 249 ◽  
Author(s):  
Gabriel Braunstein ◽  
Gustavo R. Paz-Pujalt

ABSTRACTWe demonstrate the homoepitaxial growth of SrTiO3 prepared by the method of metallo-organic decomposition (MOD). Thin films of SrTiO3 are prepared by spin-coating and thermal decomposition of a solution of metallo-organic compounds, on single crystal, <100> oriented, SrTiO3 substrates and subsequently heat treated at temperatures ranging from 650°C to 1100°C for 30 minutes. Heat treatment at 1100°C results in the formation of single-crystal SrTiO3, perfectly aligned with respect to the underlying substrate.Ion-channeling analysis shows that the transformation to singlecrystal material proceeds epitaxially from the coating-substrate interface towards the surface of the sample. Transmission electron microscopy (TEM) studies of partially regrown samples reveal two distinct phases: an epitaxially aligned single-crystal phase, adjacent to the substrate, and a polycrystalline phase on top. On the basis of these observations, it is proposed that the crystallization of the MOD films involves the competition between two processes: layer-by-layer solid phase epitaxy and random nucleation and growth of crystallites. Layerby- layer epitaxy is the predominant crystallization mechanism unless it is inhibited by extrinsic factors like the contamination of the interface between the MOD film and the single-crystal substrate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agnès Dewaele ◽  
Angelika D. Rosa ◽  
Nicolas Guignot ◽  
Denis Andrault ◽  
João Elias F. S. Rodrigues ◽  
...  

AbstractThe compression of argon is measured between 10 K and 296 K up to 20 GPa and and up to 114 GPa at 296 K in diamond anvil cells. Three samples conditioning are used: (1) single crystal sample directly compressed between the anvils, (2) powder sample directly compressed between the anvils, (3) single crystal sample compressed in a pressure medium. A partial transformation of the face-centered cubic (fcc) phase to a hexagonal close-packed (hcp) structure is observed above 4.2–13 GPa. Hcp phase forms through stacking faults in fcc-Ar and its amount depends on pressurizing conditions and starting fcc-Ar microstructure. The quasi-hydrostatic equation of state of the fcc phase is well described by a quasi-harmonic Mie–Grüneisen–Debye formalism, with the following 0 K parameters for Rydberg-Vinet equation: $$V_0$$ V 0 = 38.0 Å$$^3$$ 3 /at, $$K_0$$ K 0 = 2.65 GPa, $$K'_0$$ K 0 ′ = 7.423. Under the current experimental conditions, non-hydrostaticity affects measured P–V points mostly at moderate pressure ($$\le$$ ≤ 20 GPa).


2019 ◽  
Vol 21 (29) ◽  
pp. 16329-16336 ◽  
Author(s):  
Suchinder K. Sharma ◽  
Thomas Köhler ◽  
Jan Beyer ◽  
Margret Fuchs ◽  
Richard Gloaguen ◽  
...  

Extending the temperature sensing range up to 865 K using an appropriate choice of excitation wavelength and coupling scheme in a single crystal sample of EuPO4.


2006 ◽  
Vol 89 (23) ◽  
pp. 232906 ◽  
Author(s):  
X. Y. Zhou ◽  
T. Heindl ◽  
G. K. H. Pang ◽  
J. Miao ◽  
R. K. Zheng ◽  
...  

2020 ◽  
Vol 65 (3) ◽  
pp. 299-304
Author(s):  
O. N. Makarevich ◽  
A. V. Ivanov ◽  
A. I. Gavrilov ◽  
A. M. Makarevich ◽  
O. V. Boytsova

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2068 ◽  
Author(s):  
Yusuke Yabara ◽  
Seiichiro Izawa ◽  
Masahiro Hiramoto

In this study, the operation of donor/acceptor photovoltaic cells fabricated on homoepitaxially grown p-doped rubrene single-crystal substrates is demonstrated. The photocurrent density is dominated by the sheet conductivity (σ□) of the p-type single-crystal layer doped to 100 ppm with an iron chloride (Fe2Cl6) acceptor. A 65 μm thick p-type rubrene single-crystal substrate is expected to be required for a photocurrent density of 20 mA·cm−2. An entire bulk doping technique for rubrene single crystals is indispensable for the fabrication of practical organic single-crystal solar cells.


Sign in / Sign up

Export Citation Format

Share Document