Numerical Simulation of Flow and Transport in Fractured Tuff

1983 ◽  
Vol 26 ◽  
Author(s):  
B. J. Travis ◽  
S. W. Hodson ◽  
H. E. Nuttall ◽  
T. L. Cook ◽  
R. S. Rundberg

ABSTRACTThe unsaturated, fractured tuff of Yucca Mountain in the Nevada Test Site is one of the potential sites for geologic storage of high-level radioactive waste. A modeling study of flow and transport in this geologically complex site is presented. Numerical models of mass and heat flow in conjunction with analytical solutions are being used for sensitivity and pathway analysis studies and to aid in design and interpretation of laboratory and field flow and transport tests in tuff.

1991 ◽  
Vol 245 ◽  
Author(s):  
J. L. Krumhansl ◽  
T. E. Hinkebein ◽  
J. Myers

ABSTRACTCementitious materials, together with other materials, are being considered to seal a potential repository at Yucca Mountain. A concern with cementitious materials is the chemical and mineralogic changes that may occur as these materials age while in contact with local ground waters. A combined theoretical and experimental approach was taken to determine the ability to theoretically predict mineralogic changes. The cementitious material selected for study has a relatively low Ca:Si ratio approaching that of the mineral tobermorite. Samples were treated hydrothermally at 200°C with water similar to that obtained from the J-13 well on the Nevada Test Site. Post-test solutions were analyzed for pH as well as dissolved K, Na, Ca, Al, and Si. Solid phases formed during these experiments were characterized by scanning electron microscopy and X-ray diffraction. These findings were compared with predictions made by the geochemical modeling code EQ3NR/EQ6. It was generally found that there was good agreement between predicted and experimental results.


1986 ◽  
Vol 84 ◽  
Author(s):  
Gail A. Cederberg ◽  
L. Eric Greenwade ◽  
Bryan J. Travis

AbstractAn area containing unsaturated fractured tuffs at Yucca Mountain, Nevada, is one of the potential sites for geologic storage of high-level radioactive waste. The Environmental Protection Agency (EPA) 40 CFR 191 Regulation limits the cumulative releases of many radionuclides from the repository to the accessible environment for 10,000 years after disposal [I]. Numerical models can be used to determine if the EPA containment requirement is met.In this paper a preliminary set of transport calculations for uranium and technetium is discussed. First, a foundation for the calculations, a comprehensive, referenced geochemical/geophysical model containing the current stratigraphic, petrologic, hydrogeologic, geochemical, and material data for the Yucca Mountain site was compiled. Second, the integrated transport of uranium and technetium from the repository to the water table was modeled. An expected-case flow scenario and a worse-case flow scenario were used in the calculations. The sorption of technetium was neglected in the worse-case scenario. Results show that in the case of uranium, the estimated transport was only moderately sensitive to the magnitude of the flow because sorption had a significant effect on the retardation. In the case of technetium, when sorption was neglected, the flow dominated the transport. The EPA contain- ment requirements were met for all cases. These preliminary calculations will be used as a basis to investigate the effects of physical and geochemi- cal processes on the long-term transport of radionuclides at Yucca Mountain.


2000 ◽  
Vol 663 ◽  
Author(s):  
D.K. Smith ◽  
A.B. Kersting ◽  
J.L. Thompson ◽  
D.L. Finnegan

ABSTRACTUnderground nuclear test sites offer an unprecedented opportunity to evaluate processes relevant to high-level waste repository performance in the absence of engineered barriers. Radionuclide migration programs at the Nevada Test Site represent a twenty-five year systematic investigation of the diverse radiologic source terms residual from weapons testing and the evolution of the hydrologic source term which comprises those radionuclides dissolved in or otherwise available for transport by groundwater. The Nevada Test Site shares actinide source terms, correlative geology, an identical tectonic setting, similar climate, and a thick unsaturated zone with the adjacent potential Yucca Mountain high-level waste repository and provides a natural laboratory to assess long-term radionuclide transport in the near field. Analog studies may ultimately help validate predictions of radionuclide transport from the potential Yucca Mountain repository.


Sign in / Sign up

Export Citation Format

Share Document