Calculation of the Stability and the Polarizability of Isolated Fullerene Molecules as a Function of Charge State

1992 ◽  
Vol 270 ◽  
Author(s):  
Andrew A. Quong ◽  
Mark R. Pederson

ABSTRACTWe present first-principles local density functional calculations of the electronic structure and energetics of neutral and negatively charged fullerene molecules. We find thatthe negatively charged -1 state is stable relative to the neutral molecule and that the -2 state is stable relative to the neutral molecule but not to the -1 state of the molecule. We have also performed calculations of the electronic polarizabilities for different charged states and developed a simple model to estimate the dielectric constant of fullerene based crystals.

1995 ◽  
Vol 384 ◽  
Author(s):  
Zhi-Qiang Li ◽  
Yuichi Hashi ◽  
Jing-Zhi Yu ◽  
Kaoru Ohno ◽  
Yoshiyuki Kawazoe

ABSTRACTThe electronic structure and magnetic properties of rhodium clusters with sizes of 1 - 43 atoms embedded in the nickel host are studied by the first-principles spin-polarized calculations within the local density functional formalism. Single Rh atom in Ni matrix is found to have magnetic moment of 0.45μB. Rh13 and Rhl 9 clusters in Ni matrix have lower magnetic moments compared with the free ones. The most interesting finding is tha.t Rh43 cluster, which is bulk-like nonmagnetic in vacuum, becomes ferromagnetic when embedded in the nickel host.


1994 ◽  
Vol 357 ◽  
Author(s):  
M. W. Finnis ◽  
C. Kruse ◽  
U. SchÖnberger

AbstractWe discuss the recent first principles calculations of the properties of interfaces between metals and oxides. This type of calculation is parameter-free, and exploits the density functional theory in the local density approximation to obtain the electronic structure of the system. At the same time the equilibrium atomic structure is sought, which minimises the excess energy of the interface. Up to now calculations of this type have been made for a few model interfaces which are atomically coherent, that is with commensurate lattices. Examples are Ag/MgO and Nb/Al2O3. In these cases it has been possible to predict the structures observed by high resolution electron microscopy. The calculations are actually made in a supercell geometry, in which there are alternating nanolayers of metal and ceramic. Because of the effectiveness of metallic screening in particular, the interfaces between the nanolayers do not interfere much with each other.Besides the electronic structure of the interface, such calculations have provided values of the ideal work of adhesion. Electrostatic image forces in conjunction with the elementary ionic model provide a simple framework for understanding the results.An important role of such calculations is to develop intuition about the nature of the bonding, including the effects of charge transfer, which has formerly only been described in an empirical way. It may then be possible to build atomistic models of the metal/ceramic interaction which have a sound physical basis and can be calibrated against ab initio results. Simpler models are necessary if larger systems, including misfit dislocations and other defects, are to be simulated, with a view to understanding the atomic processes of growth and failure. Another area in which ab initio calculations can be expected to contribute is in the chemistry of impurity segregation and its effect at interfaces. Such theoretical tools are a natural partner to the experimental technique of high resolution electron energy loss spectroscopy for studying the local chemical environment at an interface.


1990 ◽  
Vol 206 ◽  
Author(s):  
B. I. Dunlap ◽  
D. W. Brenner ◽  
R. C. Mowrey ◽  
J. W. Mintmire ◽  
D. H. Robertson ◽  
...  

ABSTRACTNewly developed empirical hydrocarbon potentials and self-consistent first-principles local density functional methods are used to investigate possible isomers and the electronic structure of C60H36. Within the high symmetry Th structure conjectured by the groups at Rice University there are two inequivalent sets of hydrogen atoms containing twelve and twenty-four atoms respectively. Binding each set either inside or outside of the C60 cage leads to four isomers of C60H36 with inequivalent strain energies. Although we find that placing twelve hydrogens inside the cage can lead to a metastable structure, our calculated total energies suggest that the isomer with all the hydrogens on the outside of the cage is the energetically most stable.


Sign in / Sign up

Export Citation Format

Share Document