Magnetic Properties of Embedded Rh Clusters in Ni Matrix

1995 ◽  
Vol 384 ◽  
Author(s):  
Zhi-Qiang Li ◽  
Yuichi Hashi ◽  
Jing-Zhi Yu ◽  
Kaoru Ohno ◽  
Yoshiyuki Kawazoe

ABSTRACTThe electronic structure and magnetic properties of rhodium clusters with sizes of 1 - 43 atoms embedded in the nickel host are studied by the first-principles spin-polarized calculations within the local density functional formalism. Single Rh atom in Ni matrix is found to have magnetic moment of 0.45μB. Rh13 and Rhl 9 clusters in Ni matrix have lower magnetic moments compared with the free ones. The most interesting finding is tha.t Rh43 cluster, which is bulk-like nonmagnetic in vacuum, becomes ferromagnetic when embedded in the nickel host.

1992 ◽  
Vol 270 ◽  
Author(s):  
Andrew A. Quong ◽  
Mark R. Pederson

ABSTRACTWe present first-principles local density functional calculations of the electronic structure and energetics of neutral and negatively charged fullerene molecules. We find thatthe negatively charged -1 state is stable relative to the neutral molecule and that the -2 state is stable relative to the neutral molecule but not to the -1 state of the molecule. We have also performed calculations of the electronic polarizabilities for different charged states and developed a simple model to estimate the dielectric constant of fullerene based crystals.


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 816 ◽  
Author(s):  
Chao Zhang ◽  
Yu Cao ◽  
Xing Dai ◽  
Xian-Yong Ding ◽  
Leilei Chen ◽  
...  

First-principles calculations were performed to investigate the effects of boron/nitrogen dopant on the geometry, electronic structure and magnetic properties of the penta-graphene system. It was found that the electronic band gap of penta-graphene could be tuned and varied between 1.88 and 2.12 eV depending on the type and location of the substitution. Moreover, the introduction of dopant could cause spin polarization and lead to the emergence of local magnetic moments. The main origin of the magnetic moment was analyzed and discussed by the examination of the spin-polarized charge density. Furthermore, the direction of charge transfer between the dopant and host atoms could be attributed to the competition between the charge polarization and the atomic electronegativity. Two charge-transfer mechanisms worked together to determine which atoms obtained electrons. These results provide the possibility of modifying penta-graphene by doping, making it suitable for future applications in the field of optoelectronic and magnetic devices.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


1994 ◽  
Vol 357 ◽  
Author(s):  
M. W. Finnis ◽  
C. Kruse ◽  
U. SchÖnberger

AbstractWe discuss the recent first principles calculations of the properties of interfaces between metals and oxides. This type of calculation is parameter-free, and exploits the density functional theory in the local density approximation to obtain the electronic structure of the system. At the same time the equilibrium atomic structure is sought, which minimises the excess energy of the interface. Up to now calculations of this type have been made for a few model interfaces which are atomically coherent, that is with commensurate lattices. Examples are Ag/MgO and Nb/Al2O3. In these cases it has been possible to predict the structures observed by high resolution electron microscopy. The calculations are actually made in a supercell geometry, in which there are alternating nanolayers of metal and ceramic. Because of the effectiveness of metallic screening in particular, the interfaces between the nanolayers do not interfere much with each other.Besides the electronic structure of the interface, such calculations have provided values of the ideal work of adhesion. Electrostatic image forces in conjunction with the elementary ionic model provide a simple framework for understanding the results.An important role of such calculations is to develop intuition about the nature of the bonding, including the effects of charge transfer, which has formerly only been described in an empirical way. It may then be possible to build atomistic models of the metal/ceramic interaction which have a sound physical basis and can be calibrated against ab initio results. Simpler models are necessary if larger systems, including misfit dislocations and other defects, are to be simulated, with a view to understanding the atomic processes of growth and failure. Another area in which ab initio calculations can be expected to contribute is in the chemistry of impurity segregation and its effect at interfaces. Such theoretical tools are a natural partner to the experimental technique of high resolution electron energy loss spectroscopy for studying the local chemical environment at an interface.


Sign in / Sign up

Export Citation Format

Share Document