scholarly journals The Influence of Microstructure on the Mechanical Behavior of Silicon Nitride Ceramics

1992 ◽  
Vol 287 ◽  
Author(s):  
P. F. Becher ◽  
H. T. Lin ◽  
S. L. Hwang ◽  
M. J. Hoffmann ◽  
I-Wei Chen

The introduction of elongated silicon nitride grains during densification in the presence of a liquid phase can impart considerable improvement to the fracture toughness. This toughening is not universally attained but depends on the activation of intergranular rather than transgranular fracture. This is reminiscent of the requirement of interfacial debonding in whiskerreinforced ceramics. In fact, additional observations such as bridging in the crack wake by elongated grains and pullout of some of these grains further suggest that the crack wake mechanisms that contribute to the toughening of whisker-reinforced ceramics can also operate in silicon nitrides containing elongated grains. Various investigators have found that, consistent with crack wake mechanisms, the fracture toughness of silicon nitrides increases with increase in the diameter of the larger elongated grains. However, little is known about the effects of the grain boundary phase(s) and their properties on the interfacial debonding/intergranular fracture in such silicon nitrides. This is critical as observations show that crack propagation in some systems exhibiting larger elongated grains occurs transgranularly and no toughening occurs.

2007 ◽  
Vol 336-338 ◽  
pp. 1172-1174
Author(s):  
Gang Feng Guo ◽  
Xiao Zhan Yang ◽  
Jian Bao Li ◽  
Hong Lin ◽  
Long Liang ◽  
...  

Silicon nitride ceramics were fabricated with Yb2O3 as the sintering additive. The effects of the amount of Yb2O3 on the microstructure and the mechanical properties such as the flexural strength and the fracture toughness were investigated. Almost fully densified Si3N4 was obtained when only 4 wt% Yb2O3 was added. Both the flexural strength and the fracture toughness increased steadily with the Yb2O3 content. The transgranular fracture mode was observed in the specimen containing 4 wt% Yb2O3, however, the intergranular fracture mode was observed in the specimen containing 10 wt% Yb2O3.


2007 ◽  
Vol 352 ◽  
pp. 45-48 ◽  
Author(s):  
Hiroyuki Miyazaki ◽  
Hideki Hyuga ◽  
Yuichi Yoshizawa ◽  
Kiyoshi Hirao ◽  
Tatsuki Ohji

The influence of two measuring conditions, the elapsed time after indentation and the condition of edge of an indenter, on the indentation fracture toughness of silicon nitrides was assessed. No slow crack-growth after unloading was confirmed by optical microscopic observation of a crack tip induced by the indentation, which led to the negligible difference in fracture toughness measured at 1 and 30 min after the indentation. Measurements with relatively new and used indenters gave almost the same fracture toughness data, indicating that the crack lengths were hardly affected by the slight damage of the corner of the indenter. It was suggested that the large scattering of the indentation fracture toughness reported by the round-robin tests such as VAMAS was not originated from these factors.


2006 ◽  
Vol 317-318 ◽  
pp. 649-652 ◽  
Author(s):  
Takafumi Kusunose ◽  
Tohru Sekino ◽  
P.E.D. Mogan ◽  
Koichi Niihara

The Si3N4/YSiO2N composite in which crystalline YSiO2N was formed as grain boundary phase was fabricated by hot-pressing the mixture of SiO2, Si3N4 and Y2O3. The fracture toughness of this composite was significantly improved, compared to the Si3N4 composites containing Y5Si3O12N or Y2Si3O3N4 as a grain boundary phases. To clarify the toughening mechanism, the microstructure and the crack propagation profiles were observed.


2001 ◽  
Vol 16 (8) ◽  
pp. 2264-2270 ◽  
Author(s):  
Hirokazu Kawaoka ◽  
Tomohiko Adachi ◽  
Tohru Sekino ◽  
Yong-Ho Choa ◽  
Lian Gao ◽  
...  

Highly densed silicon nitride ceramics with various α/β phase ratios were produced by pulse electric current sintering process. The β-phase content of Si3N4 in sintered materials varied from 20 to 100 wt% depending on the sintering condition. The microstructure was observed by scanning electron microscopy and investigated by image analysis. Young's modulus, hardness, fracture toughness, and strength were strongly dependent on the α/β phase ratio. The fracture toughness increased from 4.6 MPa m1/2 for 20-wt% b-phase content to 8.2 MPa m1/2 for 95-wt% β-phase content, and the fracture strength showed a maximum value of about 1.6 GPa at 60-to-80-wt% β-phase content.


2007 ◽  
Vol 42 (18) ◽  
pp. 7920-7926 ◽  
Author(s):  
D. Bučevac ◽  
S. Bošković ◽  
B. Matović ◽  
Lj. Živković ◽  
M. Vlajić ◽  
...  

2010 ◽  
Vol 105-106 ◽  
pp. 27-30 ◽  
Author(s):  
Wei Ru Zhang ◽  
Feng Sun ◽  
Ting Yan Tian ◽  
Xiang Hong Teng ◽  
Min Chao Ru ◽  
...  

Silicon nitride ceramics were prepared by gas pressure sintering (GPS) with different sintering additives, including La2O3, Sm2O3 and Al2O3. Effect of sintering additives on the phase-transformation, microstructure and mechanical properties of porous silicon nitride ceramics was investigated. The results show that the reaction of sintering additives each other and with SiO2 had key effects on the phase-transformation, grain growing and grain boundaries. With 9MPa N2 atmosphere pressure, holding 1h at 1850°C, adding 10wt% one of the La2O3, Sm2O3, Al2O3, porous silicon nitride was prepared and the relative density was 78%, 72%, 85% respectively. The flexural strength was less than 500MPa, and the fracture toughness was less than 4.8MPam1/2. Dropping compounds sintering additives, such as La2O3+Al2O3, Sm2O3+Al2O3 effectively improves the sintering and mechanical properties. The relative density was 99.2% and 98.7% with 10wt% compounds sintering additives. The grain ratio of length to diameter was up to 1:8. The flexural strength was more than 900MPa, and the fracture toughness was more than 8.9MPam1/2.


Sign in / Sign up

Export Citation Format

Share Document