Effects of Sintering Additives on the Microstructure and Mechanical Properties of Silicon Nitride Ceramics by GPS

2010 ◽  
Vol 105-106 ◽  
pp. 27-30 ◽  
Author(s):  
Wei Ru Zhang ◽  
Feng Sun ◽  
Ting Yan Tian ◽  
Xiang Hong Teng ◽  
Min Chao Ru ◽  
...  

Silicon nitride ceramics were prepared by gas pressure sintering (GPS) with different sintering additives, including La2O3, Sm2O3 and Al2O3. Effect of sintering additives on the phase-transformation, microstructure and mechanical properties of porous silicon nitride ceramics was investigated. The results show that the reaction of sintering additives each other and with SiO2 had key effects on the phase-transformation, grain growing and grain boundaries. With 9MPa N2 atmosphere pressure, holding 1h at 1850°C, adding 10wt% one of the La2O3, Sm2O3, Al2O3, porous silicon nitride was prepared and the relative density was 78%, 72%, 85% respectively. The flexural strength was less than 500MPa, and the fracture toughness was less than 4.8MPam1/2. Dropping compounds sintering additives, such as La2O3+Al2O3, Sm2O3+Al2O3 effectively improves the sintering and mechanical properties. The relative density was 99.2% and 98.7% with 10wt% compounds sintering additives. The grain ratio of length to diameter was up to 1:8. The flexural strength was more than 900MPa, and the fracture toughness was more than 8.9MPam1/2.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5221
Author(s):  
Jaroslaw Wozniak ◽  
Mateusz Petrus ◽  
Tomasz Cygan ◽  
Artur Lachowski ◽  
Bogusława Adamczyk-Cieślak ◽  
...  

This paper discusses the influence of Ti3C2 (MXene) addition on silicon nitride and its impact on the microstructure and mechanical properties of the latter. Composites were prepared through powder processing and sintered using the spark plasma sintering (SPS) technic. Relative density, hardness and fracture toughness, were analyzed. The highest fracture toughness at 5.3 MPa·m1/2 and the highest hardness at HV5 2217 were achieved for 0.7 and 2 wt.% Ti3C2, respectively. Moreover, the formation of the Si2N2O phase was observed as a result of both the MXene addition and the preservation of the α-Si3N4→β-Si3N4 phase transformation during the sintering process.


2008 ◽  
Vol 368-372 ◽  
pp. 1764-1766 ◽  
Author(s):  
Yu Jin Wang ◽  
Lei Chen ◽  
Tai Quan Zhang ◽  
Yu Zhou

The ZrC-W composites with iron as sintering additive were fabricated by hot-press sintering. The densification, microstructure and mechanical properties of the composites were investigated. The incorporation of Fe beneficially promotes the densification of ZrC-W composites. The relative density of the composite sintered at 1900°C can attain 95.3%. W2C phase is also found in the ZrC-W composite sintered at 1700°C. The content of W2C decreases with the increase of sintering temperature. However, W2C phase is not identified in the composite sintered at 1900°C. The flexural strength and fracture toughness of the composites are strongly dependent on sintering temperature. The flexural strength and fracture toughness of ZrC-W composite sintered at optimized temperature of 1800°C are 438 MPa and 3.99 MPa·m1/2, respectively.


2007 ◽  
Vol 336-338 ◽  
pp. 1172-1174
Author(s):  
Gang Feng Guo ◽  
Xiao Zhan Yang ◽  
Jian Bao Li ◽  
Hong Lin ◽  
Long Liang ◽  
...  

Silicon nitride ceramics were fabricated with Yb2O3 as the sintering additive. The effects of the amount of Yb2O3 on the microstructure and the mechanical properties such as the flexural strength and the fracture toughness were investigated. Almost fully densified Si3N4 was obtained when only 4 wt% Yb2O3 was added. Both the flexural strength and the fracture toughness increased steadily with the Yb2O3 content. The transgranular fracture mode was observed in the specimen containing 4 wt% Yb2O3, however, the intergranular fracture mode was observed in the specimen containing 10 wt% Yb2O3.


2005 ◽  
Vol 287 ◽  
pp. 271-276
Author(s):  
Dong Soo Park ◽  
Byung Dong Hahn ◽  
D.-J. Baik

Sintered reaction bonded silicon nitride with aligned whisker seeds was prepared by tape casting silicon slurry with 5 wt% b-Si3N4 whisker seeds followed by nitridation and sintering. Three different sintering additives were used for the samples; 7 wt% Y2O3, 6 wt% Y2O3 + 1 wt% Al2O3 and 5 wt% Y2O3 + 2 wt% Al2O3. The sample with 5 wt% Y2O3 + 2 wt% Al2O3 showed the fastest a to b phase transformation after nitridation and the highest fracture toughness and flexural strength after gas pressure sintering among the samples. It also had finer microstructure than the other samples after sintering at 2248 K and at 2273 K. The finer microstructure was related to the faster phase transformation after nitridation, which resulted in the higher flexural strength.


2012 ◽  
Vol 583 ◽  
pp. 219-222
Author(s):  
Rui Feng Wang ◽  
Zhi Ping Sun ◽  
Guo Jun Zhang ◽  
Li Yan Zou

VC/Fe-based composite samples were fabricated with different volume fraction of VC in vacuum, and the content are 40%, 55%, and 70% respectively. The relationship between microstructure and mechanical properties for VC/Fe based composite with various VC content were studied. The results indicated VC content had a significant effect on the performance and organization of the VC/Fe-based composites and the effect of VC content on the mechanical properties are varied. With ratio of VC powders increased, the volume fraction of V8C7 particles formed additionally, while the fraction of Fe particles slightly decreased. The flexural strength, fracture toughness, relative density and wear resistant increased with increase of VC content in the range of 0 to 55vol. %, and then decreased with further increase of VC content, while the Vickers hardness increased with the increase of VC content. By comparing the material with 55vol.%VC would show the best combination of properties in the prepared samples.


Sign in / Sign up

Export Citation Format

Share Document