High-Purity Germanium Technology for Gamma-Ray and X-Ray Spectroscopy

1993 ◽  
Vol 302 ◽  
Author(s):  
L.S. Darken ◽  
C. E. Cox

ABSTRACTHigh-purity germanium (HPGe) for gamma-ray spectroscopy is a mature technology that continues to evolve. Detector size is continually increasing, allowing efficient detection of higher energy gamma rays and improving the count rate and minimum detectable activity for lower energy gamma rays. For low-energy X rays, entrance window thicknesses have been reduced to where they are comparable to those in Si(Li) detectors. While some limits to HPGe technology are set by intrinsic properties, the frontiers have historically been determined by the level of control over extrinsic properties. The point defects responsible for hole trapping are considered in terms of the “standard level” model for hole capture. This model originates in the observation that the magnitude and temperature dependence of the cross section for hole capture at many acceptors in germanium is exactly that obtained if all incident s-wave holes were captured. That is, the capture rate is apparently limited by the arrival rate of holes that can make an angular-momentum-conserving transition to a s ground state. This model can also be generalized to other materials, where it may serve as an upper limit for direct capture into the ground state for either electrons or holes. The capture cross section for standard levels σS.L. is given bywhere g is the degeneracy of the ground state of the center after capture, divided by the degeneracy before capture. Mc is the number of equivalent extrema in the band structure for the carrier being captured, mo is the electronic mass, m* is the effective mass, and T is the temperature in degrees Kelvin.

1986 ◽  
Vol 89 ◽  
pp. 305-321
Author(s):  
Richard I. Epstein

AbstractThe power per logarithmic bandwidth in gamma-ray burst spectra generally increases rapidly with energy through the x-ray range and does not cut off sharply above a few MeV. This spectral form indicates that a very small fraction of the energy from a gamma-ray burst source is emitted at low energies or is reprocessed into x-rays and that the high-energy gamma rays are not destroyed by photon-photon interactions. The implications are that the emission mechanism for the gamma-ray bursts is not synchrotron radiation from electrons that lose most of their energy before being re-accelerated and that either the regions from which the gamma rays are emitted are large compared to the size of a neutron star or the emission is collimated and beamed away from the stellar surface.


1994 ◽  
Vol 142 ◽  
pp. 645-648
Author(s):  
E. Rieger

AbstractBursts have been observed by the gamma-ray spectrometer on SMM at medium- and high-energy gamma-rays that precede the flare maximum. The negligible contribution of nuclear lines in the spectra of these events and their impulsive appearance suggests that they are hard-electron-dominated events superposed on the flares. Spatial resolution at gamma-ray energies will be necessary to decide whether this kind of bursts is cospatial with the flares or whether they occur in the flares’ vicinity.Subject headings: Sun: flares — Sun: X-rays, gamma rays


1972 ◽  
Vol 50 (11) ◽  
pp. 1182-1194 ◽  
Author(s):  
P. Taras ◽  
A. Turcotte ◽  
R. Vaillancourt

The properties of the first five excited levels in 37Ar were investigated via the 37Cl(p,n)37Ar reaction at Ep = 3.98, 4.17, 4.38, and 4.81 MeV and via the 34S(α,n)37Ar reaction at Eα = 8.00, 8.50, and 8.60 MeV. The following excitation energies were obtained: Ex = 1409.7 ± 0.4, 1611.5 ± 0.4, 2217.8 ± 0.8, 2491.4 ± 0.8, and 2797.0 ± 0.8 keV. These levels were found to decay almost entirely to the ground state. The angular distribution and the linear polarization of the decay gamma rays of these levels were measured. From these measurements definite spin–parity assignments as well as values of the mixing ratio of the ground state gamma-ray transitions were obtained. These are: Ex(Jπ, δ) = 1612 ([Formula: see text], +0.11 ± 0.02), 2218 ([Formula: see text], 0.0 ± 0.02), 2491 ([Formula: see text]), and 2797 ([Formula: see text], −0.16 ± 0.03 or +8.0 ± 1.5, the value of −0.16 being more probable). The measurements were also consistent with a spin of [Formula: see text] for the 1410 keV level. The results are compared with a recent shell-model calculation and are discussed in the context of the solar neutrino capture rate in 37Cl.


2020 ◽  
Vol 494 (3) ◽  
pp. 4357-4370
Author(s):  
B Olmi ◽  
D F Torres

ABSTRACT Identification and characterization of a rapidly increasing number of pulsar wind nebulae is, and will continue to be, a challenge of high-energy gamma-ray astrophysics. Given that such systems constitute -by far- the most numerous expected population in the TeV regime, such characterization is important not only to learn about the sources per se from an individual and population perspective, but also to be able to connect them with observations at other frequencies, especially in radio and X-rays. Also, we need to remove the emission from nebulae in highly confused regions of the sky for revealing other underlying emitters. In this paper, we present a new approach for theoretical modelling of pulsar wind nebulae: a hybrid hydrodynamic-radiative model able to reproduce morphological features and spectra of the sources, with relatively limited numerical cost.


2014 ◽  
Vol 93 ◽  
pp. 524-529 ◽  
Author(s):  
David J. Lawrence ◽  
William C. Feldman ◽  
Robert E. Gold ◽  
John O. Goldsten ◽  
Ralph L. McNutt

2020 ◽  
Vol 492 (4) ◽  
pp. 5980-5986
Author(s):  
M Araya

ABSTRACT G279.0+1.1 is a supernova remnant (SNR) with poorly known parameters, first detected as a dim radio source and classified as an evolved system. An analysis of data from the Fermi-Large Area Telescope (LAT) revealing for the first time an extended source of gamma-rays in the region is presented. The diameter of the GeV region found is ${\sim} 2{^{\circ}_{.}}8$, larger than the latest estimate of the SNR size from radio data. The gamma-ray emission covers most of the known shell and extends further to the north and east of the bulk of the radio emission. The photon spectrum in the 0.5–500 GeV range can be described by a simple power law, $\frac{\mathrm{ d}N}{\mathrm{ d}E} \propto E^{-\Gamma }$, with a spectral index of Γ = 1.86 ± 0.03stat ± 0.06sys. In the leptonic scenario, a steep particle spectrum is required and a distance lower than the previously estimated value of 3 kpc is favoured. The possibility that the high-energy emission results from electrons that already escaped the SNR is also investigated. A hadronic scenario for the gamma-rays yields a particle spectral index of ∼2.0 and no significant constraints on the distance. The production of gamma-rays in old SNRs is discussed. More observations of this source are encouraged to probe the true extent of the shell and its age.


1998 ◽  
Vol 188 ◽  
pp. 125-128
Author(s):  
T. Kifune

The current status of very high energy gamma ray astronomy (in ~ 1 TeV region) is described by using as example results of CANGAROO (Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Outback). Gamma rays at TeV energies, emitted through inverse Compton effect of electrons or π0 decay from proton interaction, provide direct evidence on “hot” non-thermal processes of the Universe, as well as environmental features, such as the strength of magnetic field in the emission region, for the non-thermal processes.


1994 ◽  
Vol 142 ◽  
pp. 707-711
Author(s):  
H. Aurass ◽  
A. Hofmann ◽  
E. Rieger

AbstractVector magnetogram data and Hα pictures together with data published by Chupp et al. lead us to conjecture that in the presented case a contact between the rising two-ribbon flare current sheet and a coronal loop connecting two nearby plage regions initiates efficient high-energy γ-ray emission.Subject headings: Sun: corona — Sun: flares — Sun: X-rays, gamma rays


Sign in / Sign up

Export Citation Format

Share Document