The Influence of Quantizing Magnetic Field on The Magnetic Susceptibilities in Ultra Thin Films of Dilute Magnetic Materials

1993 ◽  
Vol 313 ◽  
Author(s):  
Kamakhya P Ghatak ◽  
S. N. Biswas

ABSTRACTIn this paper we have studied the dia and paramagnetic susceptibilities of the holes in ultrathin films of dilute magnetic materials in the presence of a quantizing magnetic field and compared the same with that of the bulk specimens under magnetic quantization for the purpose of relative comparison. It is found, taking Hg1−xMnxTe and Cd1−xMnxSe as examples, that both the susceptibilities increase with decreasing film thickness and increasing surface concentration in oscillatory Manners. The numerical values of the susceptibilities in ultrathin films of dilute magnetic materials are greater than that of the bulk and the theoretical analysis is in agreement with the experimental data as reported elsewhere.

1997 ◽  
Vol 494 ◽  
Author(s):  
Kamakhya P. Ghatak ◽  
P. K. Bose ◽  
Gautam Majumder

ABSTRACTIn this paper we have studied the dia and paramagentic susceptibilities of the holes in ultrathin films of magnetic materials in the presence of a parallel magentic field on the basis of a newly derived dispersion law for such systems. The numerical computations are performed taking Hg1-xMnx Te and Cd1-xMnx Se as examples. Both the susceptibilities increses with decreasing doping and film thickness respectively. It is important to note that not only the paramagnetic-to-diamagnetic susceptibility ratio for the present case deviates from (1/3) in conventional semiconductors, but also that is a critical region, where quenching of the diamagnetic occurs. The theoretical analysis is in agreement with the experimental datas as given elsewhere.


2019 ◽  
Vol 945 ◽  
pp. 771-775 ◽  
Author(s):  
V.P. Panaetov ◽  
Denis B. Solovev

Ferromagnetic film can be a matrix for recording information with the help of magnetic moments of electrons. The study of the processes of changing the magnetic structure in an electron-transmission microscope makes it possible to investigate micro magnetic phenomena. In this paper, we investigate the interaction between the vertices of neighboring regions. It is shown how the magnetic structure of the vertices of the domains changes as they approach each other with the help of an increasing constant magnetic field applied along the axis of easy magnetization. The distance was measured between the vertices of the domains. The schemes of distribution of the magnetization vectors between interacting vertices are shown. These schemes are made from experimental images of the magnetic structure. The distances between domain vertices and domain walls were compared on the basis of experimental data. The film thickness is 50 nm; the structure is Ni0.83-Fe0.17. The films were obtained by the method proposed by us. From the experimental results it follows that the interaction of the domain walls is observed at a distance of 20 microns and the interaction of the domain vertices is manifested at a distance of 100 μm.


1993 ◽  
Vol 308 ◽  
Author(s):  
Kamakhya P. Ghatak ◽  
Sambhu Nath Biswas

ABSTRACTIn this paper we have investigated the carrier contribution to elastic constants in very thin films of stressed small gap compounds within the domain of theory. It is found, taking stressed ultrathin films Hg1-xCdxTe and In1-xGaxAsyP1-y lattice matched to InP as examples, that the elastic constants increase with increasing electron concentration and decreasing film thickness respectively in oscillatory manners. Besides the stress enhances the numerical values of such contribution to the elastic constants. In addition, the theoretical formulation is in agreement with the suggested experimental method of determining such constants in materials having arbitary dispersion laws.


Sign in / Sign up

Export Citation Format

Share Document