Excimer Laser Annealed Poly-Si TFT Technologies

1995 ◽  
Vol 377 ◽  
Author(s):  
Fujio Okumura ◽  
Kenji Sera ◽  
Hiroshi Tanabe ◽  
Katsuhisa Yuda ◽  
Hiroshi Okumura

ABSTRACTThis paper describes the excimer laser annealed (ELA) poly-Si TFT technologies in terms of excimer laser annealing of Si films, the leakage current, and the TFT stability. A laser energy density and a shot dependencies of TFT characteristics was analyzed by TEM, SEM, and Raman. The mobility increases with increasing not only the energy density but also the shot density. The mobility increase with the energy density is due to the grain size enlargement. On the other hand, the mobility increase up to 10 to 20 shots is due to a decrease of defects, including small grains, grain boundaries and defects inside grains. The contribution of grain-growth is small. The ELA TFT has a micro-offset structure to reduce the leakage current. Moreover, we have proposed a dynamic leakage current reduction structure. The combination of these technologies provides a sufficiently small leakage current for AMLCDs. The stability of the gate insulator was analyzed. The TFT shows negative threshold voltage shift under gate bias stress. This is due to water penetration and the subsequent field activated chemical reaction in the gate insulator. The dissociation of Si-OH bonds with hydrogen-bonded water was a fundamental contributor. The shift was suppressed sufficiently by hydrogen passivation. Obtained ELA TFTs;s have mobilities of over 100 cm2/Vsec, threshold voltages of less than 3 V, effective leakage currents of less than 10−13 A, and are stable more than 10 years.

1989 ◽  
Vol 164 ◽  
Author(s):  
K. Winer ◽  
R.Z. Bachrach ◽  
R.I. Johnson ◽  
S.E. Ready ◽  
G.B. Anderson ◽  
...  

AbstractThe effects of fast-pulse excimer laser annealing of a-Si:H were investigated by measurements of electronic transport properties and impurity concentration depth profiles as a function of incident laser energy density. The dc dark conductivity of laser-annealed, highly-doped a-Si:H increases by a factor of ∼350 above a sharp laser energy density threshold whose magnitude increases with decreasing impurity concentration and which correlates with the onset of hydrogen evolution from and crystallization of the near-surface layer. The similarities between the preparation and properties of laser-crystallized a-Si:H and pc-Si:H are discussed.


2001 ◽  
Vol 693 ◽  
Author(s):  
Man Young Sung ◽  
Woong-Je Sung ◽  
Yong-Il Lee ◽  
Chun-Il Park ◽  
Woo-Boem Choi ◽  
...  

Abstract:GaN thin films on sapphire were grown by RF magnetron sputtering with ZnO buffer layer. The tremendous mismatch between the lattices of GaN and sapphire can be partly overcome by the use of thin buffer layer of ZnO. The dependence of GaN film quality on ZnO buffer layer was investigated by X-ray diffraction(XRD). The properties of the sputtered GaN are strongly dependent on ZnO buffer layer thickness. The optimum thickness of ZnO buffer layer is around 30nm. Using XRD analysis, we have found the optimal substrate temperature which can grow high quality GaN thin film. In addition, the effect of excimer laser annealing(ELA) on structural and electrical properties of GaN thin films was investigated. The surface roughness and images according to the laser energy density were investigated by atomic force microscopy(AFM) and it was confirmed that the crystallization was improved by increasing laser energy density.


2007 ◽  
Vol 124-126 ◽  
pp. 371-374 ◽  
Author(s):  
C.N. Chen ◽  
G.M. Wu ◽  
W.S. Feng

Low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) are demanded to fabricate high performance liquid crystal displays (LCD) and organic light-emitting diode displays (OLED). The mobility of poly-Si TFT can be two orders of magnitude higher than that of amorphous Si (a-Si) TFT. Excimer laser annealing has been studied to be the most promising technology to meet the stringent requirement in high speed operation. The process parameters were identified as a-Si thickness, laser energy density, overlap ratio, annealing atmosphere and pre-clean condition. The a-Si layer of 40-50 nm was deposited by plasma enhanced chemical vapor deposition (PECVD). The XeCl excimer laser was irradiated on the a-Si film at room temperature under N2 or N2/O2 environment. The energy density ranged 250-400 mJ/cm2, and the overlap ratio was 95-99%. The highly aligned poly-Si array thin film could be obtained. The grain size has been about 0.31x0.33 μm2, and the regular arrangement in poly-Si grains was discussed. In addition, the PMOS TFT has been fabricated from the aligned poly-Si array. The mobility was as high as 100 cm2/Vs and the sub-threshold swing was around 0.24 V/dec. The threshold voltage was -1.25 V and the on/off current ratio was about 106.


2013 ◽  
Vol 750-752 ◽  
pp. 946-951
Author(s):  
Chun Yan Duan ◽  
Bin Ai ◽  
Rong Xue Li ◽  
Chao Liu ◽  
Jian Jun Lai ◽  
...  

Selected area laser-annealed polycrystalline silicon (p-Si) thin films were prepared by a 248 nm excimer laser. 1 μm thick p-Si films with grain size less than 100 nm were deposited on SiO2substrate by chemical vapor deposition using atmospheric pressure (APCVD). Grain sizes before and after annealing was examined by scanning electron microscopy (SEM) and the mechanism of grain growth was discussed in detail. The maximum grain size of a selected area laser-annealed p-Si film can be increased from 100 nm up to 2.9 μm on SiO2substrate by using appropriate laser energy densities. It indicated that silicon grains in laser-annealed regions had grown up competitively with three stages.


2004 ◽  
Vol 814 ◽  
Author(s):  
Yong Hoon Kim ◽  
Sung Kyu Park ◽  
Dae Gyu Moon ◽  
Won Keun Kim ◽  
Jeong In Han

AbstractIn this report, excimer laser annealed polycrystalline silicon (poly-Si) films on flexible polymer substrates are investigated. The amorphous silicon (a-Si) films were first deposited on polycarbonate (PC) and polyethersulfone (PES) substrates by radio-frequency (RF) magnetron sputter and sequentially annealed by XeCl excimer laser annealing system (λ = 308 nm). The argon concentration of a-Si films which was estimated by Rutherford Backscattering Spectrometry (RBS) was found to be dependent on the dynamic pressure during the deposition process and the sputtering gas. Typically, the argon concentration of a-Si film was 1 ∼ 2% when the film was deposited using argon gas at 6 mTorr. After the annealing process, the average grain size of the poly-Si film annealed with laser energy density of 289 mJ/cm2was 400 nm estimated from transmission electron microscope (TEM) investigations.


2008 ◽  
Author(s):  
Norie Matsubara ◽  
Tomohiko Ogata ◽  
Takanori Mitani ◽  
Shinji Munetoh ◽  
Teruaki Motooka

1992 ◽  
Vol 283 ◽  
Author(s):  
Hiroshi Iwata ◽  
Tomoyuki Nohda ◽  
Satoshi Ishida ◽  
Takashi Kuwahara ◽  
Keiichi Sano ◽  
...  

ABSTRACTThe grain size of phosphorous (P)-doped poly-Si film has been enlarged to about 5000 Å by controlling the solidification velocity of molten Si during ArF excimer laser annealing. The drastically enlarged grain has few defects inside the grain. It has been confirmed that control of the solidification velocity is effective for P-doped poly-Si similar to the case of non-doped poly-Si films. In addition, a sheet resistance of 80 Ω/□ (ρ = 4 × 10-4 Ω · cm) has been achieved for very thin (500 Å) films by recrystallizing PECVD P-doped a-Si films.


Shinku ◽  
2000 ◽  
Vol 43 (12) ◽  
pp. 1120-1125 ◽  
Author(s):  
Naoto MATSUO ◽  
Hisashi ABE ◽  
Naoya KAWAMOTO ◽  
Ryouhei TAGUCHI ◽  
Tomoyuki NOUDA ◽  
...  

1997 ◽  
Vol 471 ◽  
Author(s):  
Jae-Hong Jeon ◽  
Cheol-Min Park ◽  
Hong-Seok Choi ◽  
Cheon-Hong Kim ◽  
Min-Koo Han

ABSTRACTWe have proposed the new poly-Si TFT which reduces the leakage current effectively by employing highly resistive a-Si region in the channel. The active layer of proposed device is crystallized selectively by employing excimer laser annealing while the both sides of channel near the source/drain are not recrystallized and remained as a-Si. Unlikely LDD or offset structure, the a-Si region which is designed to reduce the leakage current acts as the conduction channel of carriers under the ON state, so that the ON current is decreased very little. The selectively crystallized active layer can be fabricated by irradiating the excimer laser through ITO film of which transmittance at the wave length of laser is selectively adjusted. In the course of fabricating the proposed device, any additional photo masking step is not necessary and misalign problem is eliminated. The experimental results show that the ON/OFF current ratio of proposed poly-Si TFT is 106 while that of conventional one is 105.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (6) ◽  
pp. 461-465 ◽  
Author(s):  
P.C. van der Wilt ◽  
M.G. Kane ◽  
A.B. Limanov ◽  
A.H. Firester ◽  
L. Goodman ◽  
...  

AbstractLow-defect-density polycrystalline Si on flexible substrates can be instrumental in realizing the full potential of macroelectronics. Direct deposition or solid-phase crystallization techniques are often incompatible with polymers and produce materials with high defect densities. Excimer-laser annealing is capable of producing films of reasonable quality directly on polymer and metallic substrates. Sequential lateral solidification (SLS) is an advanced pulsed-laser-crystallization technique capable of producing Si films on polymers with lower defect density than can be obtained via excimer-laser annealing. Circuits built directly on polymers using these SLS films show the highest performance reported to date.


Sign in / Sign up

Export Citation Format

Share Document