Transient Phase Formation During the Growth of Epitaxial CoSi2 by Annealing of Co/Ti Bi-Layers on (100) Si

1995 ◽  
Vol 402 ◽  
Author(s):  
D. J. Miller ◽  
T. I. Selinder ◽  
K. E. Gray

AbstractPhase evolution during the annealing of Co/Ti bi-layers on (100) Si has been studied by x-ray diffraction and analytical electron microscopy. X-ray diffraction performed in situ during annealing revealed a reaction pathway involving the formation of a transient phase when epitaxial CoSi2 films were grown. Analytical electron microscopy was used to identify this phase as a spinel-related phase, isostructural with Co2TiO4. This phase grows as a result of the presence of the Ti interlayer and a small amount of oxygen from the annealing ambient. Annealing in vacuum or other purified inert gases yielded polycrystalline CoSi2 films which form via a different reaction pathway that does not involve a spinel phase. This spinel phase may serve both to reduce the native oxide from the underlying Si substrate and to control interdiffusion between Si and Co during the reaction, thereby promoting epitaxial growth.

Clay Minerals ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 317-332 ◽  
Author(s):  
M. Do Campo ◽  
F. Nieto

AbstractMica-chlorite mixed-layering was identified by X-ray diffraction (XRD) as a major or subordinate constituent in several slates of the Puncoviscana Formation from Sierra de Mojotoro (Eastern Cordillera, NW Argentina). In order to determine the crystallochemical characteristics of these mixed-layered sequences and interpret their petrological meaning, anchizonal slate P90 was chosen for TEM observations. In this slate, dioctahedral mica and chlorite form interleaved phyllosilicate grains (IPG) or stacks, up to 110 um long, preferentially oriented with (001) planes at a high angle to the slaty cleavage but also oblique to S0.In agreement with XRD results, the main phyllosilicates identified by transmission electron microscopy (TEM) were dioctahedral mica and random mixed-layer muscovite-chlorite, with chlorite in subordinate amounts and scarce smectite. In the lattice-fringe images of mixed-layer packets, a sequence of irregular stacking that produced apparent 24 Å (10 + 14) layers was observed, but it was frequently possible to distinguish the 10 Å layers from adjacent 14 Å layers. In nearly all packets, 14 Å layers prevail, exhibiting 14 Å:10 Å ratios between 1:1 and 3:1. Some elongated lenticular fissures which are probably a consequence of layer collapse caused by the TEM vacuum were identified in these packets. The straight, continuous appearance of lattice fringes plus the scarce evidence of collapsed layers identified suggest that these packets correspond principally to mixed-layer muscovite-chlorite, which is confirmed by analytical electron microscopy analyses. However, smectite-like layers are probably the third component of some of these mixed-layer sequences, which may account for their high Si and low (Fe + Mg) contents, their low interlayer charge in relation to theoretical interlayer muscovite-chlorite, and for the presence of Ca in the interlayer site.Textural relationships between chlorite and muscovite packets in IPG along with the observed transformations from 14 Å to 10 Å along the layer, is compatible with a prograde metamorphic replacement of chlorite in stacks by dioctahedral mica layers, probably in the presence of an aqueous fluid.


Clay Minerals ◽  
1999 ◽  
Vol 34 (2) ◽  
pp. 291-299 ◽  
Author(s):  
U. G. Gasser ◽  
R. Nüesch ◽  
M. J. Singer ◽  
E. Jeanroy

AbstractA series of Mn-goethites was synthesized at highly alkaline conditions. The samples were aged for 15 days at a final [KOH] of 0.3 M. Products were washed free from non-goethite phases using 3 M H2SO4. The bulk mineralogy of the samples was determined by X-ray diffraction and verified on selected individual crystals by electron diffraction. The samples had a relatively low magnetic susceptibility (300≤MS≤400×10-9 m3/kg). As revealed by total acid dissolution, the Mn mole fraction XMn ranged from zero to 0.125. Five samples (XMn: 0.025, 0.050, 0.077, 0.099, 0.125) were selected to investigate the variability of the XMn value in single goethite needles (crystals) by analytical electron microscopy (AEM) using rastered and spot analyses. Linear regressions of both as a function of total Mn yielded unit slopes and zero intercepts, indicating that acid dissolution gave the same results as AEM. Spot AEM, however, revealed significant variation of Mn distribution within individual crystals which argues in favour of Mn zoning in goethite. Inhomogeneous transformation of ferrihydrite to goethite may partly explain the Mn zoning.


Author(s):  
R.G. Frederickson ◽  
R.G. Ulrich ◽  
J.L. Culberson

Metallic cobalt acts as an epileptogenic agent when placed on the brain surface of some experimental animals. The mechanism by which this substance produces abnormal neuronal discharge is unknown. One potentially useful approach to this problem is to study the cellular and extracellular distribution of elemental cobalt in the meninges and adjacent cerebral cortex. Since it is possible to demonstrate the morphological localization and distribution of heavy metals, such as cobalt, by correlative x-ray analysis and electron microscopy (i.e., by AEM), we are using AEM to locate and identify elemental cobalt in phagocytic meningeal cells of young 80-day postnatal opossums following a subdural injection of cobalt particles.


Author(s):  
M. Tamizifar ◽  
G. Cliff ◽  
R.W. Devenish ◽  
G.W. Lorimer

Small additions of copper, <1 wt%, have a pronounced effect on the ageing response of Al-Mg-Si alloys. The object of the present investigation was to study the effect of additions of copper up to 0.5 wt% on the ageing response of a series of Al-Mg-Si alloys and to use high resolution analytical electron microscopy to determine the composition of the age hardening precipitates.The composition of the alloys investigated is given in Table 1. The alloys were heat treated in an argon atmosphere for 30m, water quenched and immediately aged either at 180°C for 15 h or given a duplex treatment of 180°C for 15 h followed by 350°C for 2 h2. The double-ageing treatment was similar to that carried out by Dumolt et al. Analyses of the precipitation were carried out with a HB 501 Scanning Transmission Electron Microscope. X-ray peak integrals were converted into weight fractions using the ratio technique of Cliff and Lorimer.


1982 ◽  
Vol 30 (5) ◽  
pp. 481-486 ◽  
Author(s):  
R E McClung ◽  
J Wood

Analytical electron microscopy was used to determine the quantitative effects of paraformaldehyde pretreatment on the formation of the biogenic amine-glutaraldehyde-chrome complex. Pretreatment with paraformaldehyde prevented the glutaraldehyde-chrome reaction with norepinephrine in the rat adrenal medulla. In contrast to the effect of paraformaldehyde on norepinephrine, pretreatment did not prevent the chrome reaction in serotonin-containing argentaffin cells of the gut. X-Ray energy spectrographic analysis revealed a significant decrease in chrome content in the paraformaldehyde treated tissue, but sufficient chrome did react to produce an electron-dense product. Thus by treating tissue with paraformaldehyde prior to the glutaraldehyde chrome procedure, serotonergic sites may be differentiated from catecholaminergic areas at the electron microscopic level.


Clay Minerals ◽  
2001 ◽  
Vol 36 (3) ◽  
pp. 307-324 ◽  
Author(s):  
M. D. Ruiz Cruz

AbstractMixed-layered phyllosilicates with composition intermediate between mica and chlorite were identified in very low-grade metaclastites from the Malàguide Complex (Betic Cordilleras, Spain), and studied by X-ray diffraction, and transmission and analytical electron microscopy. They occur both as small grains in the rock matrix, and associated with muscovitechlorite stacks. Transmission electron microscope observations revealed a transition from chlorite to ordered 1:1 interstratifications through complex 1:2 and 1:3 interstratifications. Analytical electron microscopy data indicate a composition slightly different from the sum of discrete trioctahedral chlorite and dioctahedral mica. The types of layer transitions suggest that mixed-layer formation included two main processes: (1) the replacement of a brucite sheet by a cation sheet in the chlorite structure; and (2) the precipitation of mica-like layers between the chlorite layers. The strongest diffraction lines in oriented X-ray patterns are: 12.60 Å (002), 7.98 Å (003), 4.82 Å (005) and 3.48 Å (007).


Sign in / Sign up

Export Citation Format

Share Document