Preparation, Characterization and Optical Properties of Zinc Oxide Nanoparticles

1996 ◽  
Vol 452 ◽  
Author(s):  
Shoutian Li ◽  
Stuart J. Silvers ◽  
M. Samy El-Shall

AbstractZnO nanoparticles are produced by the laser vaporization-controlled condensation technique. These particles are connected in a web-like agglomeration. Their properties are compared to those of ZnO nanoparticles produced by solution sol-gel and reverse micelle techniques. All particles have the bulk crystal structure and show quantum size effects in absorption and emission. They show emissions that consist of a blue bandgap feature with a sub-nanosecond lifetime and a green feature with multiexponential lifetime decays. Emission from the stearate coated particles produced by the reversed micelle method is particularly intense.

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Parisa Shafiee ◽  
Mehdi Reisi Nafchi ◽  
Sara Eskandarinezhad ◽  
Shirin Mahmoudi ◽  
Elahe Ahmadi

Zinc oxide nanoparticles (ZnO) exhibit numerous characteristics such as biocompatibility, UV protection, antibacterial activity, high thermal conductivity, binding energy, and high refractive index that make them ideal candidates to be applied in a variety of products like solar cells, rubber, cosmetics, as well as medical and pharmaceutical products. Different strategies for ZnO nanoparticles’ preparation have been applied: sol-gel method, co-precipitation method, etc. The sol-gel method is an economic and efficient chemical technique for nanoparticle (NPs) generation that has the ability to adjust the structural and optical features of the NPs. Nanostructures are generated from an aqueous solution including metallic precursors, chemicals for modifying pH using either a gel or a sol as a yield. Among the various approaches, the sol-gel technique was revealed to be one of the desirable techniques for the synthesis of ZnO nanoparticles. In this review, we explain some novel investigations about the synthesis of zinc oxide nanoparticles via sol-gel technique and applications of sol-gel zinc oxide nanoparticles. Furthermore, we study recent sol-gel ZnO nanoparticles, their significant characteristics, and their applications in biomedical applications, antimicrobial packaging, drug delivery, semiconductors, biosensors, catalysts, photoelectron devices, and textiles.


2019 ◽  
Vol 2 (1) ◽  
pp. 42-52
Author(s):  
Abdur Rehman ◽  
Saira Ahmad ◽  
Abdul Mateen ◽  
Huma Qamar ◽  
Mudaber Ahmad Mubashar ◽  
...  

Nanotechnology is the science, engineering and technology conducted at the scale that ranges between 1-100 nanometers. For the bio-application, evolution of nanotechnology is creating the concern of scientists towards the synthesis of nanoparticles. The nanoparticles have unique characteristics as compare to bulk materials. Zinc oxide (ZnO) is a matchless semiconductor and it has been under investigation due to its wide range of applications in various areas like biomedical, electronics, material science and optics. In the present work synthesis of ZnO nanoparticles was carried out by using simple chemical approach, Sol-gel method for being effective and inexpensive, by employing zinc acetate dehydrate Zn (CH3CO2)2.2H2O as a precursor and sodium hydroxide (NaOH) starch as a constant agent. The structural properties of resultant zinc oxide nanoparticles were investigated by X-ray diffraction (XRD) technique. The XRD data confirmed the hexagonal wurtzite structure of ZnO powder confirmed by JCPDS 36-1451 data. Particles size was calculated by Scherrer formula and calculated size was 30.14 nm. These nanoparticles were investigated for inhibition zone of bacterial strain Escherichia coli, a gram-negative microbe, at various concentrations of ZnO nanoparticles. Zinc oxide nanoparticles were very proficient for inhibition of growth of bacterial strain E. coli. The mechanism of ZnO NPs for antibacterial activity is release of reactive oxygen species which not only hydrolyze cell wall but cell membrane and cellular components as well providing a potential bactericidal effect.


2017 ◽  
Vol 17 (3) ◽  
pp. 259-262 ◽  
Author(s):  
Munir Ashraf ◽  
Muhammad Irfan Siyal ◽  
Ahsan Nazir ◽  
Abdur Rehman

AbstractFunctionalization of textile fabrics with metal oxide nanoparticles can be used to add antibacterial and moisture management properties to them. Current work focuses on the development of these properties on polyester/cotton woven fabrics by treating them with zinc oxide nanoparticles for workwear and sportswear applications. Zinc oxide nanoparticles, prepared by sol-gel method, were applied on fabric samples, which were then tested for antibacterial and moisture management properties using standard test methods AATCC 147 with Staphylococcus aureus and AATCC 195, respectively. It was found that application of ZnO nanoparticles improved both these properties with smaller particle imparting larger effects on both of them.


2018 ◽  
Vol 34 (3) ◽  
pp. 488-495 ◽  
Author(s):  
Zalak Joshi ◽  
Davit Dhruv ◽  
K.N. Rathod ◽  
J.H. Markna ◽  
A. Satyaprasad ◽  
...  

1991 ◽  
Vol 16 (6) ◽  
pp. 623-638 ◽  
Author(s):  
P.A. Badoz ◽  
F. Arnaud d'Avitaya ◽  
E. Rosencher

1983 ◽  
Vol 44 (C10) ◽  
pp. C10-375-C10-378 ◽  
Author(s):  
P. Ahlqvist ◽  
P. de Andrés ◽  
R. Monreal ◽  
F. Flores

1968 ◽  
Vol 96 (9) ◽  
pp. 61-86 ◽  
Author(s):  
B.A. Tavger ◽  
V.Ya. Demikhovskii

1997 ◽  
Vol 229 (6) ◽  
pp. 401-405 ◽  
Author(s):  
A. Crépieux ◽  
C. Lacroix ◽  
N. Ryzhanova ◽  
A. Vedyayev

Sign in / Sign up

Export Citation Format

Share Document