scholarly journals Mechanistic Study of Antibacterial Properties of Chemically Synthesize Zinc Oxide Nanoparticles

2019 ◽  
Vol 2 (1) ◽  
pp. 42-52
Author(s):  
Abdur Rehman ◽  
Saira Ahmad ◽  
Abdul Mateen ◽  
Huma Qamar ◽  
Mudaber Ahmad Mubashar ◽  
...  

Nanotechnology is the science, engineering and technology conducted at the scale that ranges between 1-100 nanometers. For the bio-application, evolution of nanotechnology is creating the concern of scientists towards the synthesis of nanoparticles. The nanoparticles have unique characteristics as compare to bulk materials. Zinc oxide (ZnO) is a matchless semiconductor and it has been under investigation due to its wide range of applications in various areas like biomedical, electronics, material science and optics. In the present work synthesis of ZnO nanoparticles was carried out by using simple chemical approach, Sol-gel method for being effective and inexpensive, by employing zinc acetate dehydrate Zn (CH3CO2)2.2H2O as a precursor and sodium hydroxide (NaOH) starch as a constant agent. The structural properties of resultant zinc oxide nanoparticles were investigated by X-ray diffraction (XRD) technique. The XRD data confirmed the hexagonal wurtzite structure of ZnO powder confirmed by JCPDS 36-1451 data. Particles size was calculated by Scherrer formula and calculated size was 30.14 nm. These nanoparticles were investigated for inhibition zone of bacterial strain Escherichia coli, a gram-negative microbe, at various concentrations of ZnO nanoparticles. Zinc oxide nanoparticles were very proficient for inhibition of growth of bacterial strain E. coli. The mechanism of ZnO NPs for antibacterial activity is release of reactive oxygen species which not only hydrolyze cell wall but cell membrane and cellular components as well providing a potential bactericidal effect.

RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


2020 ◽  
Vol 20 (10) ◽  
pp. 5977-5996 ◽  
Author(s):  
Saee Gharpure ◽  
Balaprasad Ankamwar

With increase in incidence of multidrug resistant pathogens, there is a demand to adapt newer approaches in order to combat these diseases as traditional therapy is insufficient for their treatment. Use of nanotechnology provides a promising alternative as antimicrobial agents as against traditional antibiotics. Metal oxides have been exploited for a long times for their antimicrobial properties. Zinc oxide nanoparticles (ZnO NPs) are preferred over other metal oxide nanoparticles because of their bio-compatible nature and excellent antibacterial potentials. The basic mechanism of bactericidal nature of ZnO nanoparticles includes physical contact between ZnO nanoparticles and the bacterial cell wall, generation of reactive oxygen species (ROS) as well as free radicals and release of Zn2+ ions. This review focuses on different synthesis methods of ZnO nanoparticles, various analytical techniques frequently used for testing antibacterial properties, mechanism explaining antibacterial nature of ZnO nanoparticles as well as different factors affecting the antibacterial properties.


2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Parisa Shafiee ◽  
Mehdi Reisi Nafchi ◽  
Sara Eskandarinezhad ◽  
Shirin Mahmoudi ◽  
Elahe Ahmadi

Zinc oxide nanoparticles (ZnO) exhibit numerous characteristics such as biocompatibility, UV protection, antibacterial activity, high thermal conductivity, binding energy, and high refractive index that make them ideal candidates to be applied in a variety of products like solar cells, rubber, cosmetics, as well as medical and pharmaceutical products. Different strategies for ZnO nanoparticles’ preparation have been applied: sol-gel method, co-precipitation method, etc. The sol-gel method is an economic and efficient chemical technique for nanoparticle (NPs) generation that has the ability to adjust the structural and optical features of the NPs. Nanostructures are generated from an aqueous solution including metallic precursors, chemicals for modifying pH using either a gel or a sol as a yield. Among the various approaches, the sol-gel technique was revealed to be one of the desirable techniques for the synthesis of ZnO nanoparticles. In this review, we explain some novel investigations about the synthesis of zinc oxide nanoparticles via sol-gel technique and applications of sol-gel zinc oxide nanoparticles. Furthermore, we study recent sol-gel ZnO nanoparticles, their significant characteristics, and their applications in biomedical applications, antimicrobial packaging, drug delivery, semiconductors, biosensors, catalysts, photoelectron devices, and textiles.


MRS Advances ◽  
2020 ◽  
Vol 5 (21-22) ◽  
pp. 1103-1112
Author(s):  
G.G. Welegergs ◽  
H.G. Gebretinsae ◽  
R. Akoba ◽  
N. Matinsie ◽  
Z. Y. Nuru ◽  
...  

AbstractBio-reduction agents are being explored to synthesised nanoparticles to minimize the effects of toxic chemicals. The present study was focused on green approach for the synthesis of zinc oxide nanoparticles using aqueous seeds extract of Papaver somniferum. The biosynthesised ZnO NPs (27.8nm) were characterized by using of spectroscopy and microscopy instruments. The surface morphology and the structural analysis confirms the formation of hexagonal nanostructure and a pure zincite nature of ZnO nanoparticles (NPs) respectively. The EDS spectrum confirms pure ZnO NPs were synthesised. From electrochemical properties, the CV indicates both anodic and cathodic sweep are quasi-reversible properties whose intensity increases with the scan rates. The bode plot shows the maximum angles of 74o which is an indication of a higher conductivity of ZnO NPs.


2020 ◽  
Vol 7 (5) ◽  
pp. 1431-1443
Author(s):  
Hong Zhang ◽  
Zhu Chen ◽  
Qing Huang

Zinc oxide nanoparticles (ZnO NPs) are one of the most abundantly applied nanomaterials in nanotechnology-based industries, and recent research continues to highlight their transformations and potential eco-toxicity especially to aquatic environment.


2020 ◽  
Vol 12 (1) ◽  
pp. 137-143
Author(s):  
Lingling Meng ◽  
Lina Du ◽  
Yaqiong Shen ◽  
Shan Cong ◽  
Qiuyan Zhai ◽  
...  

Zinc oxide (ZnO) nanoparticles recently are of significant consideration because of their applications as nontoxic metal oxides. This study is mainly intended to improve a simple, efficient, and environment-friendly method for preparation of ZnO nanoparticles. This process has been developed based on plant-intervened synthesis by making use of microwave Saturejahortensis aqueous extract. We have further characterized the obtained Zinc oxide nanoparticles by using different techniques. Additionally, their cytotoxic potential was inspected via MTT assay against both B lymphoma, A20 and T lymphoma, EL4 cells lines. The zinc oxide nanoparticle exposed cells for about 24 h showed diminished cell viability in the tested cell lines where EL4 cells has been reduced to 75% of control after 24 h, whereas A20 cells were lowered to 68% of control. ZnO-NPs have proficiently hindered EL4 cell DNA synthesis at 100 μg concentration whereas completely blocked the DNA proliferation at about 50 g concentration. However, A20 cells besides presented similar propensity, thus exploring the ZnO-NPs potential to treat lymphomas.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 40
Author(s):  
Divya Arun ◽  
Dulanja Adikari Mudiyanselage ◽  
Rumana Gulam Mohamed ◽  
Michael Liddell ◽  
Nur Mohammad Monsur Hassan ◽  
...  

A promising approach to improve the poor antibacterial properties of dental composite resins has been the addition of metal oxide nanoparticles into the resin matrix. This systematic review aimed to determine whether the addition of zinc oxide nanoparticles (ZnO-NPs) improves the antibacterial properties of direct dental composite resins. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and registered with the PROSPERO database: CRD42019131383. A systematic literature search was conducted using the following databases: Medline (Ovid), the Cochrane Library, SCOPUS, CINAHL, Web of Science, Trove, Google Scholar, World Cat, and OpenGrey. The initial search retrieved 3178 results, which were then screened against inclusion and exclusion criteria, resulting in a total of four studies that were eligible for qualitative synthesis within this review. All the included studies were in vitro non-randomized post-test design experimental studies. A lack of congruity in the results obtained from these studies that used different tests to evaluate antibacterial activity was evident. Although some studies demonstrated a significant improvement of antibacterial properties in composites containing at least 1% ZnO-NPs (wt %), they are unlikely to present any clear clinical advantage due to the short lifetime of observed antibacterial properties.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6281
Author(s):  
Denis N. Chausov ◽  
Dmitriy E. Burmistrov ◽  
Alexander D. Kurilov ◽  
Nikolay F. Bunkin ◽  
Maxim E. Astashev ◽  
...  

The present study a comprehensive analysis of the antibacterial properties of a composite material based on borosiloxane and zinc oxide nanoparticles (ZnO NPs). The effect of the polymer matrix and ZnO NPs on the generation of reactive oxygen species, hydroxyl radicals, and long-lived oxidized forms of biomolecules has been studied. All variants of the composites significantly inhibited the division of E. coli bacteria and caused them to detach from the substrate. It was revealed that the surfaces of a composite material based on borosiloxane and ZnO NPs do not inhibit the growth and division of mammalians cells. It is shown in the work that the positive effect of the incorporation of ZnO NPs into borosiloxane can reach 100% or more, provided that the viscoelastic properties of borosiloxane with nanoparticles are retained.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1462
Author(s):  
Nadine Wiesmann ◽  
Simone Mendler ◽  
Christoph R. Buhr ◽  
Ulrike Ritz ◽  
Peer W. Kämmerer ◽  
...  

Due to the demographic change, medicine faces a growing demand for tissue engineering solutions and implants. Often, satisfying tissue regeneration is difficult to achieve especially when co-morbidities hamper the healing process. As a novel strategy, we propose the incorporation of zinc oxide nanoparticles (ZnO NPs) into biomaterials to improve tissue regeneration. Due to their wide range of biocompatibility and their antibacterial properties, ZnO NPs are already discussed for different medical applications. As there are versatile possibilities of modifying their form, size, and function, they are becoming increasingly attractive for tissue engineering. In our study, in addition to antibacterial effects of ZnO NPs, we show for the first time that ZnO NPs can foster the metabolic activity of fibroblasts as well as endothelial cells, both cell types being crucial for successful implant integration. With the gelatin sponge method performed on the chicken embryo’s chorioallantoic membrane (CAM), we furthermore confirmed the high biocompatibility of ZnO NPs. In summary, we found ZnO NPs to have very favorable properties for the modification of biomaterials. Here, incorporation of ZnO NPs could help to guide the tissue reaction and promote complication-free healing.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6140
Author(s):  
Amal A. Alyamani ◽  
Salim Albukhaty ◽  
Salman Aloufi ◽  
Faizah A. AlMalki ◽  
Hassan Al-Karagoly ◽  
...  

Green nanoparticle synthesis is an environmentally friendly approach that uses natural solvents. It is preferred over chemical and physical techniques due to the time and energy savings. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) through a green method that used Phlomis leaf extract as an effective reducing agent. The synthesis and characterization of ZnO NPs were confirmed by UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Dynamic light scattering (DLS), Zeta potential, and Field Emission Scanning Electron Microscope (FESEM) techniques. In vitro cytotoxicity was determined in L929 normal fibroblast cells using MTT assay. The antibacterial activity of ZnO nanoparticles was investigated using a disk-diffusion method against S. aureus and E. coli, as well as minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) content concentrations. XRD results confirmed the nanoparticles’ crystalline structure. Nanoparticle sizes were found to be around 79 nm by FESEM, whereas the hydrodynamic radius of nanoparticles was estimated to be around 165 3 nm by DLS. FTIR spectra revealed the formation of ZnO bonding and surfactant molecule adsorption on the surface of ZnO NPs. It is interesting to observe that aqueous extracts of phlomis leave plant are efficient reducing agents for green synthesis of ZnO NPs in vitro, with no cytotoxic effect on L929 normal cells and a significant impact on the bacteria tested.


Sign in / Sign up

Export Citation Format

Share Document