scholarly journals N-I-P Micromorph Solar Cells on Aluminium Substrates

1996 ◽  
Vol 452 ◽  
Author(s):  
M. Goetz ◽  
P. Torres ◽  
P. Pernet ◽  
J. Meier ◽  
D. Fischer ◽  
...  

AbstractThe first successful deposition of ‘micromorph’ silicon tandem solar cells of the n-i-p-n-i-p configuration is reported. In order to implement the ‘micromorph’ solar cell concept, four key elements had to be prepared: First, the deposition of mid-gap, intrinsic microcrystalline silicon (μc-Si:H) by the 'gas purifier method', second, the amorphous silicon (a-Si:H) n-i-p single junction solar cell, third, the microcrystalline silicon n-i-p single junction solar cell and fourth, the ability of depositing on aluminium sheet substrates.All the solar cells presented have been deposited on flat aluminium sheets, using a single layer antireflection coating to couple the light into the cell. It is shown, that this antireflection concept- together with a flat substrate- holds for amorphous single junction solar cells, but it reaches its limit with the extended range of spectral response of the ‘micromorph’ cell.The best initial efficiencies for each category of n-i-p cells on flat substrates were: 8.7% for the amorphous silicon single junction cell, 4.9% for the microcrystalline silicon single junction cell and 9.25% for the ‘micromorph’ tandem cell.

2006 ◽  
Vol 41 (6) ◽  
pp. 1721-1724 ◽  
Author(s):  
Zhimeng Wu ◽  
Qingsong Lei ◽  
Jianping Xi ◽  
Ying Zhao ◽  
Xinhua Geng

2022 ◽  
Vol 12 (2) ◽  
pp. 601
Author(s):  
Chae-Won Kim ◽  
Gwang-Yeol Park ◽  
Jae-Cheol Shin ◽  
Hyo-Jin Kim

In order to improve efficiency of flexible III-V semiconductor multi-junction solar cells, it is important to enhance the current density for efficiency improvement and to attain an even efficiency of solar cells on a curved surface. In this study, the nanotextured InAlP window layer of a GaAs single-junction solar cell was employed to suppress reflectance in broad range. The nanotextured surface affects the reflectance suppression with the broad spectrum of wavelength, which causes it to increase the current density and efficiency of the GaAs single-junction solar cell and alleviate the efficiency drop at the high incident angle of the light source. Those results show the potential of the effectively suppressed reflectance of multi-junction solar cells and even performance of solar cells attached on a curved surface.


Author(s):  
Pradyumna Muralidharan ◽  
Stephen M. Goodnick ◽  
Dragica Vasileska

Silicon based single junction solar cell technology continued to make significant strides in the past year with new world record module efficiencies being reported for the Panasonic heterojunction with thin intrinsic layer (HIT) module (23.8%) and the SunPower rooftop silicon module (24.1%). The HIT cell which is comprised of amorphous silicon (a-Si) and crystalline silicon (c-Si) currently holds the world record efficiency (25.6%) for a silicon based single junction solar cell. Further improvement in this technology requires a rigorous understanding of the underlying physics of the device. The device performance of a-Si and c-Si heterojunction solar cells depends heavily on the nature of transport at the hetero interface and defect assisted transport through the a-Si. Different microscopic processes dominate transport in different regions of the device and take place across widely varying time scales. In this work we present a multiscale model which utilizes different simulation methodologies to study physics in various regions of the device, namely, the Ensemble Monte Carlo (EMC), Kinetic Monte Carlo (KMC), and Drift Diffusion (DD) solvers. The EMC studies the behavior of the photogenerated carriers at the heterointerface; the KMC analyzes transport of the photogenerated carriers through the intrinsic amorphous silicon (i-a-Si) barrier layer; and the DD solver calculates current and other device properties in the low field regions of the cell. These solvers are then self consistently coupled to analyze device performance. Previously, our KMC simulations have shown that hopping is the main mode of transport through the i-a-Si, and the photogenerated carries are collected by defect emission rather that Poole - Frenkel emission or direct tunneling1. In addition, using EMC simulations we have shown that the photogenerated carriers exhibit non Maxwellian behavior at the heterointerface2. This work specifically describes the self-consistent coupling of the DD and EMC solvers. By adding the EMC solver to the multiscale solver we are able to capture the high field behavior of the photogenerated carriers, and its affect on device parameters such as JSC, VOC, FF and efficiency.


Sign in / Sign up

Export Citation Format

Share Document