Chemistry, Bonding and Fracture of Grain Boundaries in Ni3Si

1996 ◽  
Vol 460 ◽  
Author(s):  
Shanthi Subramanian ◽  
David A. Muller ◽  
John Silcox ◽  
Stephen. L. Sass

ABSTRACTTo obtain insight into the effect of dopants on the bonding and cohesive energy of gram boundaries in Ll2 intermetallic compounds, the chemistry and electronic structure at grain boundaries in B-free and B-doped Ni-23 at % Si alloys were examined, with electron energy loss spectroscopy (EELS) providing information on the former and energy dispersive X-ray spectroscopy (EDX) on the latter. Ni-enrichment was seen at large angle boundaries, both in the absence and presence of B. EELS of the Ni L3 edge showed that the bonding at Ni-rich grain boundaries was similar in both undoped and doped alloys. Comparison of the Ni L3 edge recorded at the grain boundary and in the bulk suggests that reduced hybridization and weaker bonding occurs at Ni-rich grain boundaries in both doped and undoped alloys. These changes in bonding are interpreted in terms of changes in the cohesive energy of the boundaries.

1996 ◽  
Vol 458 ◽  
Author(s):  
V. J. Keast ◽  
J. Bruley ◽  
D. B. Williams

ABSTRACTThe embrittlement of materials through the segregation of impurities to the grain boundaries is a common and industrially important problem. Despite considerable investigation, the mechanism by which the impurity elements cause embrittlement is not well understood. A change in the electron energy loss near edge structure (ELNES) has been observed at Cu grain boundaries containing Bi. This result provides experimental evidence that a change in the electronic structure at the grain boundary is responsible for embritdement.


2000 ◽  
Vol 654 ◽  
Author(s):  
S. J. Pennycook ◽  
M. Kim ◽  
G. Duscher ◽  
N. D. Browning ◽  
K. Sohlberg ◽  
...  

In the last few years, the combination of atomic-resolution Z-contrast microscopy, electron energy loss spectroscopy and first-principles theory has proved to be a powerful means for structure property correlations in complex materials1. Here we demonstrate the effectiveness of this combined approach by demonstrating the origins of electrical activity at grain boundaries in the prototypical perovskite SrTiO3 and the high-temperature superconductor YBa2Cu3O7-x, materials that are closely related in structure. We show, both experimentally and theoretically, that grain boundaries in SrTiO3 are intrinsically non-stoichiometric. Electron energy-loss spectroscopy (EELS) provides direct evidence of non-stoichiometry, in agreement with total- energy calculations that predict non-stoichiometric grain boundaries to be energetically favorable. The predicted structures are consistent with atomic-resolution Z-contrast micrographs. These results provide a consistent explanation of the grain boundary charge that was previously inferred from electrical measurements, and provides a microscopic explanation of the resulting “double-Schottky barriers”. We also present experimental evidence for non-stoichiometry at grain boundaries in the high-temperature superconductor YBa2Cu3O7-x, where the same phenomenon explains the observed exponential reduction of critical currents with grain boundary misorientation.


Author(s):  
R. F. Egerton

An important parameter governing the sensitivity and accuracy of elemental analysis by electron energy-loss spectroscopy (EELS) or by X-ray emission spectroscopy is the signal/noise ratio of the characteristic signal.


Sign in / Sign up

Export Citation Format

Share Document