Monte Carlo simulation of Boron diffusion during low energy implantation and high temperature annealing

1997 ◽  
Vol 469 ◽  
Author(s):  
M.-J. Caturla ◽  
T. Diaz de la Rubia ◽  
J. Zhu ◽  
M. Johnson

ABSTRACTWe use a kinetic Monte Carlo model to simulate the implantation of low energy Boron in Silicon, from 0.5 to 1 keV, at high doses, 1015 ions/cm2. The damage produced by each ion is calculated using UT-Marlowe, based on a binary collision approximation. During implantation at room temperature,, silicon self-interstitials, vacancies and boron interstitials are allowed to migrate and interact. The diffusion kinetics of these defects and dopants has been obtained by ab initio calculations as well as Stillinger Weber molecular dynamics. Clustering of both self-interstitials, vacancies and boron atoms is included. We also model the diffusion of the implanted dopants after a high temperature annealing in order to understand the transient enhanced diffusion (TED) phenomenon. We observe two different stages of TED During the first stage vacancies are present in the lattice together with interstitials and the diffusion enhancement is small. The second stage starts after all the vacancies disappear and gives rise to most of the final TED.

1999 ◽  
Vol 568 ◽  
Author(s):  
Jinning Liu ◽  
Kevin S. Jones ◽  
Daniel F. Downey ◽  
Sandeep Mehta

ABSTRACTTo meet the challenge of achieving ultra shallow p+/n source/drain extension junctions for 0.1 Oim node devices, ultra low energy boron implant and advanced annealing techniques have been explored. In this paper, we report the extended defect and boron diffusion behavior with various implant and annealing conditions. Boron implants were performed at energies from 0.25keV to lkeV and doses of 5 × 1014 cm−2 and 1 × 1015cm−2. Subsequent anneals were carried out in nitrogen ambient. The effect of energy, dose and oxide capping on extended defect formation and enhanced dopant diffusion was examined. It was observed that a thin screen oxide layer (35Å), grown prior to implantation, reduces the concentration of dopant in the Si by a significant amount as expected. This oxide also reduces the dislocation loops in the lattice and lowers diffusion enhancement of the dopant during annealing. The final junction depth can be optimized by using a low thermal budget spike anneal in a controlled oxygen ambient.


2005 ◽  
Vol 864 ◽  
Author(s):  
Min Yu ◽  
Xiao Zhang ◽  
Ru Huang ◽  
Xing Zhang ◽  
Yangyuan Wang ◽  
...  

AbstractBehavior of point defects in annealing is investigated a lot in order to suppress the Transient Enhanced Diffusion (TED) of boron as is urged by the development of integrated circuits. Surface annihilation possibility for point defects is very important in determining junction depth in the case of ultra-shallow doping. However the understanding on it is still ambiguous considering the inconsistent results on surface annihilation behavior. In this paper the variation of surface annihilation possibility is studied. The simulation on boron diffusion as well as silicon diffusion is performed. The evolution of Si clusters is simulated. By explaining experimental results with Kinetic Monte Carlo method based simulation, we proposed that surface annihilation possibility varies in different cases.


2001 ◽  
Vol 669 ◽  
Author(s):  
Lourdes Pelaz ◽  
Luis A. Marqués ◽  
George H. Gilmer ◽  
Juan Barbolla

ABSTRACTWe discuss atomistic simulations of ion implantation and annealing of Si over a wide range of ion dose and substrate temperatures. The DADOS Monte Carlo model has been extended to include the formation of amorphous regions, and this allows simulations of dopant diffusion at high doses. As the dose of ions increases, a continuous amorphous layer may be formed. In that case, most of the excess interstitials generated by the implantation may be swept to the surface as the amorphous layer regrows, instead of diffusing through the crystalline region. This process reduces the amount of transient enhanced diffusion during annealing. This model also reproduces the dynamic annealing during high temperature implants.


2007 ◽  
Vol 50 (6) ◽  
pp. 1656
Author(s):  
Young-Kyu Kim ◽  
Kwan-Sun Yoon ◽  
Joong-Sik Kim ◽  
Taeyoung Won

2020 ◽  
Vol 102 (3) ◽  
Author(s):  
Leonardo Evaristo de Sousa ◽  
Pedro Henrique de Oliveira Neto ◽  
Demetrio Antônio da Silva Filho

2019 ◽  
Vol 209 ◽  
pp. 133-143 ◽  
Author(s):  
Gustavo Leon ◽  
Nick Eaves ◽  
Jethro Akroyd ◽  
Sebastian Mosbach ◽  
Markus Kraft

Sign in / Sign up

Export Citation Format

Share Document