crystalline region
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Satomi Hosokawa ◽  
Eri Tomita ◽  
Shinji Kanehashi ◽  
Kenji Ogino

Abstract We reported that supercritical (sc) annealing of poly(3-hexylthiophene) (P3HT), and its block copolymers with poly(ethylene oxide) (PEO) and polystyrene (PSt) brought about improvements in the crystal structure and hole mobility, determined by the space charge limited current (SCLC) measurement. P3HT-b-PEO showed the largest increase in mobility. From XRD profile, it was found that the treatment with scCO2 increased the crystallite size and crystallinity. UV-vis spectra showed that the effective conjugation length in the scCO2 treated films was increased compared to the as-spun, suggesting that CO2 molecules are incorporated into domains of the second block domains and P3HT amorphous region, and assist to alter the characteristics of the crystalline region. Then, it was considered that the change in the crystalline structure and the improvement of P3HT chains packing led to the enhanced mobility. Since PEO is known to have a higher affinity for CO2, the increase of mobility was specifically intensive.


2021 ◽  
Vol 37 (6) ◽  
pp. 648-658
Author(s):  
Ji Won Kim ◽  
Se Rin Park ◽  
Ki Ok Han ◽  
Seon Hwa Jeong

In this study, we aimed to analyze the chemical changes that occur in Korean paper in an accelerated deterioration environment of 105℃. We selected the Korean paper produced with different types of cooking agents (plant lye, Na2CO3) and during different manufacturing seasons (winter, summer). The degree of deterioration of the Korean paper was confirmed by measuring the brightness, yellowness, and pH level, and the degree of change in each vibrational region of cellulose as deterioration progressed through infrared (FT-IR) spectroscopy. The FT-IR analysis showed that, as deterioration progressed, the absorbance of the amorphous region in cellulose decreased, whereas the absorbance of the crystalline region slightly increased. X-Ray diffraction (XRD) analysis and Raman spectroscopy were performed to verify the changes in the crystalline and amorphous regions in cellulose indicated by the FT-IR results. Furthermore, the crystallinity index (CI) was calculated; it showed a slight increase after deterioration; therefore, CI was confirmed to follow the same trend as that observed for absorbance in the FT-IR results. In addition, as a result of Raman spectroscopic analysis, the degree of decomposition of the amorphous region in the cellulose under the manufacturing conditions was confirmed by the fluorescence measured after the deterioration.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuko Ono ◽  
Miyuki Takeuchi ◽  
Yaxin Zhou ◽  
Akira Isogai

Abstract Eucalyptus (Eucalyptus globulus) cellulose was isolated from wood powder by dewaxing, delignification, and subsequent 4% NaOH extraction. 2,2,6,6-Tetramethyl-piperidine-1-oxyl (TEMPO)-oxidized eucalyptus celluloses were prepared from never-dried eucalyptus cellulose (EC) in yields of 96% and 72% (based on the dry weight of EC) when oxidized with NaOCl of 5 and 10 mmol/g-EC, respectively. Their carboxy contents were 1.4 and 1.8 mmol/g, respectively, when determined by conductivity titration. The crystallinity of cellulose I for EC decreased by TEMPO-mediated oxidation, showing that the originally crystalline region in EC was partly converted to disordered regions by TEMPO-mediated oxidation. Correspondingly, the relative signal area of C6‒OH/C1 with the trans-gauche (tg) conformation attributed to crystalline cellulose I in the solid-state 13C NMR spectrum of EC decreased from 0.42 to 0.34 by TEMPO-mediated oxidation with NaOCl of 10 mmol/g-EC. TEMPO-oxidized EC prepared with NaOCl of 10 mmol/g-EC was almost completely converted into individual TEMPO-oxidized EC nanofibrils (TEMPO-ECNFs) of homogeneous widths of ∼3 nm widths and lengths of >1 μm by mechanical disintegration in water. However, the TEMPO-ECNFs contained many kinks and had uneven surfaces, probably owing to significant damage occurring on the surface cellulose molecules of crystalline cellulose microfibrils during TEMPO-mediated oxidation.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 961-969
Author(s):  
SHARAD RAGHUVANSHI ◽  
◽  
HINA KHAN ◽  
VAISHALI SAROHA ◽  
ASHISH KADAM ◽  
...  

Technology advancement has helped in the development of high-throughput equipment for the analysis of raw material in paper industries. In this research, we have used some advanced techniques to analyze the pore size, structural and chemical changes, and cellulose crystallinity of poplar wood pretreated with steam at constant temperature and pressure conditions for different treatment time. Samples were analyzed by the nitrogen adsorption test, Fourier-transform infrared spectroscopy – attenuated total reflectance (FTIR–ATR), X-ray diffraction (XRD), and field scanning electron microscopy (FE-SEM). Slit-shaped pores were formed, with a diameter of 2.12 nm, after 30 minutes of treatment. FTIR results revealed the degradation of the lignin skeleton through the formation of guaiacyl and syringyl units and deformation in the cellulose and hemicelluloses structure. The crystallinity index (CI) increased upon steam treatment for up to 15 min, but after that, a drop in the CI was observed. The crystallite thickness (d200) increased after 15 min of treatment, due to the rearrangement of cellulose chains. However, a further increase in steam treatment duration to 30 min resulted in a decline of d200, followed by an increase in the cellulose II crystalline region and d020. The steam treatment duration of 15-30 min was found to be a critical time interval, which led to increases in the number of mesopores, CI, d200, and the cellulose II region in the poplar wood.


2021 ◽  
Vol 28 (6) ◽  
pp. 2074-2082
Author(s):  
Kangle Li ◽  
Kai Zhou ◽  
Hongliang Zhang ◽  
Hai Jin ◽  
Xiaonan Li

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chengyi Sun ◽  
Yuqing Hu ◽  
Xietian Yu ◽  
Zhijie Zhu ◽  
Shuai Hao ◽  
...  

Abstract Native rice starches were treated with five periods of ultra-high pressure homogenization (UHPH) under each of 60, 80, 100, 120, 140 and 160 MPa, respectively. The morphological, structural and physicochemical properties of starches treated with UHPH were examined. The mean particle diameter of starch nanoparticles ranged between 154.20 and 260.40 nm. SEM revealed that the granular amorphous region of starch granules was damaged under pressures between 60 and 80 MPa, and the crystalline region was further destroyed under pressures as high as 100–160 MPa. DSC demonstrated that the gelatinization temperatures and enthalpies of nanoparticles reduced. The relative crystallinity reduced from 22.90 to 13.61% as the pressure increased. FTIR showed that the absorbance ratio at 1047/1022 cm−1 decreased, and increased at 1022/995 cm−1. RVA results indicated that the viscosity of starch samples increased between 60 and 120 MPa, and the reverse effect was observed under 140 and 160 MPa.


2021 ◽  
Vol 12 (5) ◽  
pp. 6686-6698

For the first time, in this paper, synchrotron-based Fourier transform infrared spectroscopy characterized the changes in the short-order range of potato starch after ultrasonication. Ultrasonic treatment caused cracks and fissures on potato starch granules. Simultaneously, size exclusion chromatography revealed that the ultrasonic treatment having 53 kHz did not induce scissoring of the glycosidic bond of starch. Differential scanning calorimetry showed decreased thermal parameters (To, Tp and ΔH) of potato starch, indicating a disorder in the starch molecule. Furthermore, synchrotron-based FTIR gives insights on the loosening of short-range order of potato starch as reported by the disruption of the crystalline region of potato starch.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rong Li ◽  
Yunze Sun ◽  
Yihao Zhou ◽  
Jiawei Gai ◽  
Linlu You ◽  
...  

AbstractA novel expansin-like protein (CxEXL22) has been identified and characterized from newly isolated Arthrobotrys sp. CX1 that can cause cellulose decrystallization. Unlike previously reported expansin-like proteins from microbes, CxEXL22 has a parallel β-sheet domain at the N terminal, containing many hydrophobic residues to form the hydrophobic surface as part of the groove. The direct phylogenetic relationship implied the genetic transfers occurred from nematode to nematicidal fungal Arthrobotrys sp. CX1. CxEXL22 showed strong activity for the hydrolysis of hydrogen bonds between cellulose molecules, especially when highly crystalline cellulose was used as substrate. The hydrolysis efficiency of Avicel was increased 7.9-fold after pretreating with CxEXL22. The rupture characterization of crystalline region indicated that CxEXL22 strongly binds cellulose and breaks up hydrogen bonds in the crystalline regions of cellulose to split cellulose chains, causing significant depolymerization to expose much more microfibrils and enhances cellulose accessibility.


2021 ◽  
Vol 11 (18) ◽  
pp. 8570
Author(s):  
Rodica Vârban ◽  
Ioana Crișan ◽  
Dan Vârban ◽  
Andreea Ona ◽  
Loredana Olar ◽  
...  

Plant fibers are sustainable sources of materials for many industries, and can be obtained from a variety of plants. Cellulose is the main constituent of plant-based fibers, and its properties give the characteristics of the fibers obtained. Detailed characterization of cellulosic fibers is often performed after lengthy extraction procedures, while fast screening might bring the benefit of quick qualitative assessment of unprocessed stems. The aim of this research was to define some marker spectral regions that could serve for fast, preliminary qualitative characterization of unprocessed stems from some textile plants through a practical and minimally invasive method without lengthy extraction procedures. This could serve as a screening method for sorting raw materials by providing an accurate overall fingerprint of chemical composition. For this purpose, we conducted comparative Fourier Transform Infrared Spectroscopy (FT-IR) prospecting for quality markers in stems of flax (Linum usitatissimum L.), velvet leaf (Abutilon theophrasti Medik.), hemp (Cannabis sativa L.) and jute (Corchorus olitorius L.). Analysis confirmed the presence of major components in the stems of the studied plants. Fingerprint regions for cellulose signals were attributed to bands at 1420–1428 cm−1 assigned to the crystalline region and 896–898 cm−1 assigned to the amorphous region of cellulose. The optimization of characterization methods for raw materials is important and can find immediate practical applications.


Sign in / Sign up

Export Citation Format

Share Document