Ion Beam Induced Growth Structure of Fluorite Type Oxide Films for Biaxially Textured htsc Coated Conductors

1999 ◽  
Vol 587 ◽  
Author(s):  
Y. Iijima ◽  
M. Kimura ◽  
T. Saitoh

AbstractBiaxially aligned film growth by dual-ion-beam sputtering method were studied for fluorite type (Zr0.85Y0.15O1.93(YSZ), Hf0.74Yb0.26O1.87, CeO2), pyrochlore type (Zr2Sm2O7), and rare-earth C type (Y2O3, Sm2O3) oxides on polycrystalline Ni-based alloy substrates. Cube-textured (all axes aligned with a <100> axis substrate normal) films were obtained for fluorite and pyrochlore ones by low energy (<300 eV) ion bombardment at low temperatures (< 300 °C). Besides, cube textured Y2O3 films were obtained in far narrow conditions with a quite low energy (150 eV)-ion bombardment at the temperature of 300°C. The assisting ion energy dependence was discussed in connection with lattice energies for these oxide crystals.

1999 ◽  
Vol 585 ◽  
Author(s):  
Y. Iijima ◽  
M. Kimura ◽  
T. Saitoh

AbstractBiaxially aligned film growth by dual-ion-beam sputtering methods were studied for fluorite type (Zr0.85Y0.15O1.93(YSZ), Hf0.74Yb0.26O1.87, CeO2), pyrochlore type (Zr2Sm2O7), and rare-earth C type (Y2O3, Sm2O3) oxides on polycrystalline Ni-based alloy substrates. Cubetextured (all axes aligned with a <100> axis substrate normal) films were obtained for fluorite and pyrochlore ones by low energy (<300 eV) ion bombardment at low temperatures (< 300 °C). Besides, cube textured Y2O3 films were obtained in far narrower conditions with a quite low energy (150 eV)-ion bombardment at the temperature of 300 °C. The assisting ion energy dependence was discussed in connection with lattice energies for these oxide crystals.


1994 ◽  
Vol 9 (9) ◽  
pp. 2355-2361 ◽  
Author(s):  
Xiao-Ming He ◽  
Wen-Zhi Li ◽  
Heng-De Li

Low energy bombardment of CHn+ at 100-800 eV has been used to prepare TiC film at room temperature by dual ion beam sputtering. The ion bombardment energies and densities obviously affect the metallographic morphology, the crystalline orientation, and constituent ratio of TiC films. TiC films formed under 200-600 eV CHn+ bombarding with 120-190 μA/cm2 possess much finer and compact microstructure in the compressive stress state. Its hardness is in the range of 2650-2880 kgf/mm2. The tribological tests indicate that TiC films synthesized on AISI 52100 steel by DIBS with low energy bombardment exhibit low friction coefficient and good wear resistance.


Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


1983 ◽  
Vol 77 (3-4) ◽  
pp. 177-193 ◽  
Author(s):  
Ren Cong-xin ◽  
Chen Guo-Ming ◽  
Fu Xtn-Ding ◽  
Yang Jie ◽  
Fang Hong-Li ◽  
...  

2001 ◽  
Vol 229 (1-4) ◽  
pp. 415-418 ◽  
Author(s):  
M. Tada ◽  
J. Yamada ◽  
V.V. Srinivasu ◽  
V. Sreedevi ◽  
H. Kohmoto ◽  
...  

1999 ◽  
Vol 343-344 ◽  
pp. 261-264 ◽  
Author(s):  
S. Iwatsubo ◽  
T. Takahashi ◽  
M. Naoe

1985 ◽  
Vol 47 ◽  
Author(s):  
H. Windischmann ◽  
J. M. Cavese ◽  
R. W. Collins ◽  
R. D. Harris ◽  
J. Gonzalez-Hernandez

ABSTRACTThe crystallinity for silicon and germanium films deposited by ion beam sputtering (IBS) as a function of substrate temperatures was determined using Raman spectroscopy, spectroscopic ellipsometry, electrical conductivity and x-ray diffraction measurements. The results show that IBS silicon crystallizes between 300–350°C while germanium crystallizes between 20–200°C. Reasonably good agreement is obtained among the four distinctively different characterization techniques in identifying the onset of crystallinity. A direct relationship is observed between the substrate temperature required for crystallization and the log of the operating pressure for various deposition techniques. Energetic particle stimulation during film growth appears to reduce the crystallization temperature at a given operating pressure. Raman data show that the crystallization temperature depends on the deposition rate. A graded structure is observed in films deposited above 300°C, probably due to oxygen contamination.


Sign in / Sign up

Export Citation Format

Share Document