Temperature Dependence of Photoresponse in p-Type GaAs/AlGaAs Multiple Quantum Wells: Theory and Experiment

1999 ◽  
Vol 607 ◽  
Author(s):  
F. Szmulowicz ◽  
A. Shen ◽  
H. C. Liu ◽  
G. J. Brown ◽  
Z. R. Wasilewski ◽  
...  

AbstractThis paper describes a study of the photoresponse of long-wavelength (LWIR) and mid-infrared (MWIR) p-type GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) as a function of temperature and QWIP parameters. Using an 8x8 envelope-function model (EFA), we designed and calculated the optical absorption of several bound-to-continuum (BC) structures, with the optimum designs corresponding to the second light hole level (LH2) coincident with the top of the well. For the temperature-dependent study, one non-optimized LWIR and one optimized MWIR samples were grown by MBE and their photoresponse and absorption characteristics measured to test the theory. The theory shows that the placement of the LH2 resonance at the top of the well for the optimized sample and the presence of light-hole-like quasi-bound states within the heavy-hole continuum for the nonoptimized sample account for their markedly different thermal and polarization characteristics. In particular, the theory predicts that, for the LWIR sample, the LH-like quasi-bound states should lead to an increased Ppolarized photoresponse as a function of temperature. Our temperature dependent photoresponse measurements corroborate most of the theoretical findings with respect to the long-wavelength threshold, shape, and polarization and temperature dependence of the spectra.

1985 ◽  
Vol 56 ◽  
Author(s):  
H. NEFF ◽  
K. J. BACHMANN ◽  
W. D. LAIDIG

AbstractEmploying temperature dependent photoconductivity, photoluminescence and photoreflectivity measurements, we have analyzed a GaAs-AlAs multiple quantum well. The above optical techniques clearly resolve the fundamental inter-subband transitions, including heavy hole-light hole splittings. At T < 60K an anomalously high photoconductivity was discovered below the direct inter-subband transitions and is attributed tentatively to the presence of extrinsic interface states within the bandgap. For T > l00K the fundamental indirect transition was discovered and associated with LO (L) - phonon absorption.


2006 ◽  
Vol 527-529 ◽  
pp. 633-636 ◽  
Author(s):  
Sylvie Contreras ◽  
Marcin Zielinski ◽  
Leszek Konczewicz ◽  
Caroline Blanc ◽  
Sandrine Juillaguet ◽  
...  

We report on investigation of p-type doped, SiC wafers grown by the Modified- Physical Vapor Transport (M-PVT) method. SIMS measurements give Al concentrations in the range 1018 to 1020 cm-3, with weak Ti concentration but large N compensation. To measure the wafers’ resistivity, carrier concentration and mobility, temperature-dependant Hall effect measurements have been made in the range 100-850 K using the Van der Pauw method. The temperature dependence of the mobility suggests higher Al concentration, and higher compensation, than estimated from SIMS. Additional LTPL measurements show no evidence of additional impurities in the range of investigation, but suggest that the additional compensation may come from an increased concentration of non-radiative centers.


2006 ◽  
Vol 955 ◽  
Author(s):  
Eric Anthony DeCuir ◽  
Emil Fred ◽  
Omar Manasreh ◽  
Jinqiao Xie ◽  
Hadis Morkoc ◽  
...  

ABSTRACTIntersubband transitions in the spectral range of 1.37-2.90 °Cm is observed in molecular beam epitaxy grown Si-doped GaN/AlN multiple quantum wells using a Fourier-transform spectroscopy technique. A blue shift in the peak position of the intersubband transition is observed as the well width is decreased. A sample with a well width in the order of 2.4 nm exhibited the presence of three bound states in the GaN well. The bound state energy levels are calculated using a transfer matrix method. An electrochemical capacitance voltage technique is used to obtain the three dimensional carrier concentrations in these samples which further enable the calculation of the Fermi energy level position. Devices fabricated from these GaN/AlN quantum wells are found to operate in the photovoltaic mode.


2020 ◽  
Vol 10 (1) ◽  
pp. 140-144
Author(s):  
Changfu Li ◽  
Mingsheng Xu ◽  
Ziwu Ji ◽  
Kaiju Shi ◽  
Hongbin Li ◽  
...  

The temperature dependence of the spectra of photoluminescence (PL) from a blue InGaN/GaN multiplequantum-well (MQW) structure is investigated at lower excitation power. Two emission peaks, related to InGaN and assigned to In-rich quasi-quantum dots (QDs) and InGaN-matrix in the full PL spectrum, were observed. Upon increasing the temperature, both PL peak linewidths exhibited "double-W-shaped" (narrowing–broadening–narrowing–broadening–narrowing–broadening) temperature dependence. Combined with the observed features of the temperature dependences of the PL intensities, the temperature-dependent behaviors in this case can be interpreted as the relaxation and thermalization of carriers inside respective phase structures and the transfer of carriers between two phase structures, because of the strong phase separation and significant component fluctuation in the InGaN well layers.


1995 ◽  
Vol 51 (7) ◽  
pp. 4242-4246 ◽  
Author(s):  
A. E. Paul ◽  
W. Sha ◽  
Shekhar Patkar ◽  
Arthur L. Smirl

Sign in / Sign up

Export Citation Format

Share Document