Results of SIMS, LTPL and Temperature-Dependent Hall Effect Measurements Performed on Al-Doped α-SiC Substrates Grown by the M-PVT Method

2006 ◽  
Vol 527-529 ◽  
pp. 633-636 ◽  
Author(s):  
Sylvie Contreras ◽  
Marcin Zielinski ◽  
Leszek Konczewicz ◽  
Caroline Blanc ◽  
Sandrine Juillaguet ◽  
...  

We report on investigation of p-type doped, SiC wafers grown by the Modified- Physical Vapor Transport (M-PVT) method. SIMS measurements give Al concentrations in the range 1018 to 1020 cm-3, with weak Ti concentration but large N compensation. To measure the wafers’ resistivity, carrier concentration and mobility, temperature-dependant Hall effect measurements have been made in the range 100-850 K using the Van der Pauw method. The temperature dependence of the mobility suggests higher Al concentration, and higher compensation, than estimated from SIMS. Additional LTPL measurements show no evidence of additional impurities in the range of investigation, but suggest that the additional compensation may come from an increased concentration of non-radiative centers.

2012 ◽  
Vol 21 (7) ◽  
pp. 1469-1477 ◽  
Author(s):  
Chiara Modanese ◽  
Maurizio Acciarri ◽  
Simona Binetti ◽  
Anne-Karin Søiland ◽  
Marisa Di Sabatino ◽  
...  

2004 ◽  
Vol 457-460 ◽  
pp. 677-680 ◽  
Author(s):  
L. Kasamakova-Kolaklieva ◽  
L. Storasta ◽  
Ivan G. Ivanov ◽  
Björn Magnusson ◽  
Sylvie Contreras ◽  
...  

2006 ◽  
Vol 527-529 ◽  
pp. 505-508
Author(s):  
W.C. Mitchel ◽  
William D. Mitchell ◽  
S.R. Smith ◽  
G.R. Landis ◽  
A.O. Evwaraye ◽  
...  

A variety of 4H-SiC samples from undoped crystals grown by the physical vapor transport technique have been studied by temperature dependent Hall effect, optical and thermal admittance spectroscopy and thermally stimulated current. In most samples studied the activation energies were in the range 0.9 - 1.6 eV expected for commercial grade HPSI 4H-SiC. However, in several samples from developmental crystals a previously unreported deep level at EC-0.55 ± 0.01 eV was observed. Thermal admittance spectroscopy detected one level with an energy of about 0.53 eV while optical admittance spectroscopy measurements resolved two levels at 0.56 and 0.64 eV. Thermally stimulated current measurements made to study compensated levels in the material detected several peaks at energies in the range 0.2 to 0.6 eV.


1995 ◽  
Vol 402 ◽  
Author(s):  
S. Brehme ◽  
L. Ivanenko ◽  
Y. Tomm ◽  
G.-U. Reinsperger ◽  
P. Staulß ◽  
...  

AbstractPolycrystalline ß-FeSi2 layers prepared by codeposition of Si and Fe on cold and hot Si substrates and ß-FeSi2, crystals grown by chemical vapor transport were investigated. Resistivity and Hall effect measurements revealed the p-type conductivity of undoped material and the influence of some dopants of the iron group. The activation energy of a Cr-related acceptor was determined to about 85 meV. The mobility data were found to depend significantly on the purity of the preparation process.


2018 ◽  
Vol 31 (3) ◽  
pp. 20
Author(s):  
Sarmad M. M. Ali ◽  
Alia A.A. Shehab ◽  
Samir A. Maki

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hall effect measurements of ZnTe , ZnTe:Cu films show that all films were (p-type), the carrier concentration (1.1×1020 m-3) , Hall mobility (0.464m2/V.s) for pure ZnTe film, increases the carrier concentration (6.3×1021m-3) Hall mobility (2m2/V.s) for doping (Cu at 3%) film, but  decreases by increasing Cu concentration.


2005 ◽  
Vol 483-485 ◽  
pp. 25-30 ◽  
Author(s):  
Peter J. Wellmann ◽  
Thomas L. Straubinger ◽  
Patrick Desperrier ◽  
Ralf Müller ◽  
Ulrike Künecke ◽  
...  

We review the development of a modified physical vapor transport (M-PVT) growth technique for the preparation of SiC single crystals which makes use of an additional gas pipe into the growth cell. While the gas phase composition is basically fixed in conventional physical vapor transport (PVT) growth by crucible design and temperature field, the gas inlet of the MPVT configuration allows the direct tuning of the gas phase composition for improved growth conditions. The phrase "additional" means that only small amounts of extra gases are supplied in order to fine-tune the gas phase composition. We discuss the experimental implementation of the extra gas pipe and present numerical simulations of temperature field and mass transport in the new growth configuration. The potential of the growth technique will be outlined by showing the improvements achieved for p-type doping of 4H-SiC with aluminum, i.e. [Al]=9⋅1019cm-3 and ρ<0.2Ωcm, and n-type doping of SiC with phosphorous, i.e. [P]=7.8⋅1017cm-3.


1999 ◽  
Vol 14 (7) ◽  
pp. 2778-2782 ◽  
Author(s):  
M. S. Han ◽  
T. W. Kang ◽  
T. W. Kim

Transmission electron microsopy (TEM), Hall effect, and Fourier transform infrared (FTIR) transmission measurements were performed to investigate the structural, electrical, and optical properties of indium-doped Hg0.8Cd0.2Te epitaxial layers grown on Cd0.96Zn0.04Te (211) B substrates by molecular-beam epitaxy. The TEM measurements showed that high-quality Hg0.8Cd0.2Te epitaxial layers with interfacial abruptnesses were grown on the Cd0.96Zn0.04Te substrates. The Van der Pauw Hall effect measurements on typical indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures with a doping concentration of 6 × 1016 cm−3 at 10 K in a magnetic field of 0.5 T yielded a carrier density and a mobility of 2.2 × 1016 cm−3 and 40,000 cm2/V s, respectively. The FTIR spectra showed that the absorption edges of the indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures shifted to a shorter wavelength range than those of the undoped samples, which was caused by the Burstein–Moss effect. The FTIR spectra also showed that the transmittance intensities of the indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures increased compared with those of the undoped heterostructures, which is due to the compensation of the Hg vacancy defects by the indium atoms. These results indicate that the indium-doped Hg0.8Cd0.2Te epitaxial layers were high-quality n-type layers and that p-HgxCd1−xTe epilayers can be grown on indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures for the fabrication of HgxCd1−xTe photoconductors and photodiodes.


1987 ◽  
Vol 01 (03n04) ◽  
pp. 1067-1070 ◽  
Author(s):  
M. Petravić ◽  
A. Hamzić ◽  
B. Leontić ◽  
L. Forró

We present Hall effect measurements in the normal state of the high temperature superconducting ceramics La2−xSrxCuO4 (x=0, 0.1, 0.15, 0.2, 0.25, 0.3), YBa2Cu3o7 and GdBa2Cu3O7 . The first family has temperature independent Hall constant for x>0, while in the other two systems RH is proportional to 1/T. From the Hall effect it follows that the transport in these compounds is hole-like.


1999 ◽  
Vol 607 ◽  
Author(s):  
F. Szmulowicz ◽  
A. Shen ◽  
H. C. Liu ◽  
G. J. Brown ◽  
Z. R. Wasilewski ◽  
...  

AbstractThis paper describes a study of the photoresponse of long-wavelength (LWIR) and mid-infrared (MWIR) p-type GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) as a function of temperature and QWIP parameters. Using an 8x8 envelope-function model (EFA), we designed and calculated the optical absorption of several bound-to-continuum (BC) structures, with the optimum designs corresponding to the second light hole level (LH2) coincident with the top of the well. For the temperature-dependent study, one non-optimized LWIR and one optimized MWIR samples were grown by MBE and their photoresponse and absorption characteristics measured to test the theory. The theory shows that the placement of the LH2 resonance at the top of the well for the optimized sample and the presence of light-hole-like quasi-bound states within the heavy-hole continuum for the nonoptimized sample account for their markedly different thermal and polarization characteristics. In particular, the theory predicts that, for the LWIR sample, the LH-like quasi-bound states should lead to an increased Ppolarized photoresponse as a function of temperature. Our temperature dependent photoresponse measurements corroborate most of the theoretical findings with respect to the long-wavelength threshold, shape, and polarization and temperature dependence of the spectra.


Sign in / Sign up

Export Citation Format

Share Document