scholarly journals The Growth of InAsSb/InAs/InPSb/InAs Mid-Infrared Emitters by Metal-Organic Chemical Vapor Deposition

1999 ◽  
Vol 607 ◽  
Author(s):  
R. M. Biefeld ◽  
J. D. Phillips ◽  
S. R. Kurtz

AbstractWe report on the metal-organic chemical vapor deposition (MOCVD) of strained layer superlattices (SLSs) of InAsSb/InAs/InPSb/InAs as well as mid-infrared optically pumped lasers grown using a high speed rotating disk reactor (RDR). The devices contain AlAsSb cladding layers and strained, type I, InAsSb/InAs/InPSb/InAs strained layer superlattice (SLS) active regions. By changing the layer thickness and composition of the SLS, we have prepared structures with low temperature (<20K) photoluminescence wavelengths ranging from 3.4 to 4.8 µm. The optical properties of the InAsSb/InPSb superlattices revealed an anomalous low energy transition that can be assigned to an antimony-rich, interfacial layer in the superlattice. This low energy transition can be eliminated by introducing a 1.Onm InAs layer between the InAsSb and InPSb layers in the superlattice. An InAsSb/InAs/InPSb/InAs SLS laser was grown on an InAs substrate with AlAs0.16Sb0.844cladding layers. A lasing threshold and spectrally narrowed laser emission were seen from 80 through 250 K, the maximum temperature where lasing occurred. The temperature dependence of the SLS laser threshold is described by a characteristic temperature, T0 = 39 K, from 80 to 200 K.

1996 ◽  
Vol 421 ◽  
Author(s):  
R. M. Biefeld ◽  
A. A. Allerman ◽  
S. R. Kurtz

AbstractAlSb and AlAsxSb1−x epitaxial films grown by metal-organic chemical vapor deposition were successfully doped p- or n-type using diethylzinc or tetraethyltin, respectively. AlSb films were grown at 500°C and 76 torr using trimethylamine or ethyldimethylamine alane and triethylantimony. We examined the growth of AlAsSb using temperatures of 500 to 600 ° C, pressures of 65 to 630 torr, V/Ill ratios of 1–17, and growth rates of 0.3 to 2.7 μm/hour in a horizontal quartz reactor. SIMS showed C and 0 levels below 2 × 1018 cm−3 and 6×1018 cm−3 respectively for undoped AlSb. Similar levels of O were found in AlAs0.16Sb0.84 films but C levels were an order of magnitude less in undoped and Sn-doped AlAs0.16 Sb0.84 films. Hall measurements of AlAs0.16Sb0.84 showed hole concentrations between l×1017 cm−3 to 5×1018 cm−3 for Zn-doped material and electron concentrations in the low to mid 1018 cm−3 for Sndoped material. We have grown pseudomorphic InAs/InAsSb quantum well active regions on AlAsSb cladding layers. Photoluminescence of these layers has been observed up to 300 K.


Sign in / Sign up

Export Citation Format

Share Document