Accurate Dry Etching with Fluorinated Gas for Two-dimensional Si Photonic Crystal

2000 ◽  
Vol 637 ◽  
Author(s):  
Chiharu Takahashi ◽  
Jun-Ichi Takahashi ◽  
Masaya Notomi ◽  
Itaru Yokohama

AbstractAnisortopic Si dry etching is usually carried out with chlorinated gases for electronic devices such as Si-LSIs. We had another look at Si dry etching with fluorinated gases in order to obtain an ideal air hole for two-dimensional Si photonic crystal. We simulated vertical Si etching, and showed the possibility that single crystal Si can be etched vertically with high selectivity to the etching mask using fluorinated gases. We investigated ECR etching with an SF6-CF4 mixture, and vertical Si etching was achieved at room temperature. High Si/Ni selectivity above 100 was also obtained. Two-dimensional Si photonic crystal with a photonic band gap between 1.25 and 1.51 μm was produced using SF6-CF4 ECR plasma and a thin Ni mask.

2011 ◽  
Author(s):  
Xuan Guo ◽  
Lihong Han ◽  
Guifang Yuan ◽  
Zhongyuan Yu ◽  
Yumin Liu ◽  
...  

2012 ◽  
Vol 529 ◽  
pp. 14-18
Author(s):  
Pei Liu ◽  
Xiao Song Zhang ◽  
Chuan Zhen Xin ◽  
Meng Zhen Li ◽  
Lan Li

In this research, a triangular two-dimensional (2D) photonic crystal (PC) was hypothetically introduced into the active layer of a PbS quantum dots (QDs) electroluminescent (EL) device. The attributes of the photonic band gap effect and diffraction effect were considered and evaluated for device performance improvement. We designed and optimized the 2D-PC structure parameters to enhance the emission intensity at wavelength 1124 nm. The optimal structure parameter of PC is determined by normalized radius of r/a=0.49 and lattice constant of a=540 nm when the thickness of PC slab h is 74 nm. The 3D stimulation view of light propagation validates and supports the proposed strategy. The results provide a theoretical prediction for ideal PbS QDs-based EL device.


2008 ◽  
Vol 22 (23) ◽  
pp. 4059-4067
Author(s):  
YAN ZHANG ◽  
JUN-JIE SHI

A complex hexagonal lattice photonic crystal with a two-dimensional (2D) periodic dielectric background is proposed. The photonic band modulation effects due to the 2D periodic dielectric background are investigated. We find that the position and width of the complete photonic band gap (PBG) sensitively depend on the dielectric constants of the 2D periodic dielectric background. The radii of the two alternating air holes have significant influence on the relative width of the complete PBG.


2013 ◽  
Vol 538 ◽  
pp. 201-204
Author(s):  
Shou Xiang Chen ◽  
Xiu Lun Yang ◽  
Xiang Feng Meng ◽  
Yu Rong Wang ◽  
Lin Hui Wang ◽  
...  

Plane-wave expansion method was employed to analyze the photonic band gap in two-dimensional silicon nitride photonic crystal. The effects of filling ratio and lattice structure type on the photonic band gap were studied. The results showed that two-dimensional dielectric cylinder type silicon nitride photonic crystal only has TE mode band gap, while, the air column type photonic crystal has complete band gap for TE and TM modes simultaneously. The distribution of band gap can be influenced by the filling ratio of dielectric materials and the lattice type. It is shown that the triangular lattice structure is much easier to form band gap than square lattice structure.


2000 ◽  
Vol 76 (21) ◽  
pp. 2982-2984 ◽  
Author(s):  
Jeong-Ki Hwang ◽  
Han-Youl Ryu ◽  
Dae-Sung Song ◽  
Il-Young Han ◽  
Hyun-Woo Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document