Multiscale Simulations of Brittle Fracture and the Quantum-Mechanical Nature of Bonding in Silicon

2000 ◽  
Vol 653 ◽  
Author(s):  
N. Bernstein ◽  
D. Hess

AbstractWe simulate the microscopic details of brittle fracture in silicon by dynamically coupling empirical-potential molecular dynamics of a strained sample to a quantum-mechanical description of interatomic bonding at the crack tip. Our simulations show brittle fracture at loads comparable to experiment, in contrast with empirical potential simulations that show only ductile crack propagation at much higher loading. While the ductility of the empirical potentials can be attributed to their short range, it is unclear whether the increased range of the tight-binding description is sufficient to explain its brittle behavior. Using the multiscale method we show that at a temperature of 1100 K, but not at 900 K, a dislocation is sometimes nucleated when the crack tip impinges on a vacancy. While this result is too limited in length and time scales to directly correspond to experimental observations, it is suggestive of the experimentally observed brittle to ductile transition.

2016 ◽  
pp. 4039-4042
Author(s):  
Viliam Malcher

The interpretation problems of quantum theory are considered. In the formalism of quantum theory the possible states of a system are described by a state vector. The state vector, which will be represented as |ψ> in Dirac notation, is the most general form of the quantum mechanical description. The central problem of the interpretation of quantum theory is to explain the physical significance of the |ψ>. In this paper we have shown that one of the best way to make of interpretation of wave function is to take the wave function as an operator.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zbigniew Dutkiewicz

AbstractDrug design is an expensive and time-consuming process. Any method that allows reducing the time the costs of the drug development project can have great practical value for the pharmaceutical industry. In structure-based drug design, affinity prediction methods are of great importance. The majority of methods used to predict binding free energy in protein-ligand complexes use molecular mechanics methods. However, many limitations of these methods in describing interactions exist. An attempt to go beyond these limits is the application of quantum-mechanical description for all or only part of the analyzed system. However, the extensive use of quantum mechanical (QM) approaches in drug discovery is still a demanding challenge. This chapter briefly reviews selected methods used to calculate protein-ligand binding affinity applied in virtual screening (VS), rescoring of docked poses, and lead optimization stage, including QM methods based on molecular simulations.


Author(s):  
A. Blouin ◽  
S. Chapuliot ◽  
S. Marie ◽  
J. M. Bergheau ◽  
C. Niclaeys

One important part of the integrity demonstration of large ferritic components is based on the demonstration that they could never undergo brittle fracture. Connections between a ferritic component and an austenitic piping (Dissimilar Metal Weld — DMW) have to respect these rules, in particular the Heat Affected Zone (HAZ) created by the welding process and which encounters a brittle-to-ductile transition. Within that frame, the case considered in this article is a Ni base alloy narrow gap weld joint between a ferritic pipe (A533 steel) and an austenitic pipe (316L stainless steel). The aim of the present study is to show that in the same loading conditions, the weld joint is less sensitive to the brittle fracture than the surrounding ferritic part of the component. That is to say that the demonstration should be focused on the ferritic base metal which is the weakest material. The bases of this study rely on a stress-based criterion developed by Chapuliot et al., using a threshold stress (σth) below which the cleavage cannot occur. This threshold stress can be used to define the brittle crack occurrence probability, which means it is possible to determine the highest loading conditions without any brittle fracture risk.


2006 ◽  
Vol 106 (9) ◽  
pp. 2129-2144 ◽  
Author(s):  
Luiz Antônio S. Costa ◽  
Trevor W. Hambley ◽  
Willian R. Rocha ◽  
Wagner B. De Almeida ◽  
Hélio F. Dos Santos

Sign in / Sign up

Export Citation Format

Share Document