scholarly journals Multiscale real-space quantum-mechanical tight-binding calculations of electronic structure in crystals with defects using perfectly matched layers

2016 ◽  
Vol 323 ◽  
pp. 115-125 ◽  
Author(s):  
Hossein Pourmatin ◽  
Kaushik Dayal
2020 ◽  
pp. 108128652096183
Author(s):  
Soumya Mukherjee ◽  
Hossein Pourmatin ◽  
Yang Wang ◽  
Timothy Breitzman ◽  
Kaushik Dayal

In this paper, a symmetry-adapted method is applied to examine the influence of deformation and defects on the electronic structure and band structure in carbon nanotubes. First, the symmetry-adapted approach is used to develop the analog of Bloch waves. Building on this, the technique of perfectly matched layers is applied to develop a method to truncate the computational domain of electronic structure calculations without spurious size effects. This provides an efficient and accurate numerical approach to compute the electronic structure and electromechanics of defects in nanotubes. The computational method is applied to study the effect of twist, stretch, and bending, with and without various types of defects, on the band structure of nanotubes. Specifically, the effect of stretch and twist on band structure in defect-free conducting and semiconducting nanotubes is examined, and the interaction with vacancy defects is elucidated. Next, the effect of localized bending or kinking on the electronic structure is studied. Finally, the paper examines the effect of 5–8–5 Stone–Wales defects. In all of these settings, the perfectly matched layer method enables the calculation of localized non-propagating defect modes with energies in the bandgap of the defect-free nanotube.


2020 ◽  
Vol 7 (2) ◽  
pp. 191809 ◽  
Author(s):  
Simão M. João ◽  
Miša Anđelković ◽  
Lucian Covaci ◽  
Tatiana G. Rappoport ◽  
João M. V. P. Lopes ◽  
...  

We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals ( N ∼ 10 10 ). KITE’s core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green’s functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin–orbit coupling. On-the-fly calculations of real-space Green’s functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE’s intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions.


1992 ◽  
Vol 291 ◽  
Author(s):  
C. Wolverton ◽  
D. De Fontaine

ABSTRACTA cluster expansion for energetics is combined with a direct, real-space method of studying the electronic structure of ordered and disordered ternary intermetallics. The electronic structure calculations are based on an explicit averaging of local quantities over a small number of randomly chosen configurations. Quantities such as densities of states, one-electron energies, etc., are computed within the framework of the first-principles tight-binding linear muffin-tin orbital method (TB-LMTO). Effective pair interactions, which describe the ordering tendencies of the alloy, are computed for the full ternary alloy. With this technique, then, the effects on ordering trends of ternary additions to a binary alloy may be obtained. Results for Ag-Pd-Rh and Ni-Al-Cu are shown. The self-consistency of these calculations is checked against the fully self-consistent ordered LMTO calculations.


1999 ◽  
Vol 13 (04) ◽  
pp. 389-396
Author(s):  
CHIH-KAI YANG

I use a self-consistent electronic structure calculation to study the system of Cu(001) that has an impurity atom replacing one of the surface Cu atoms. The calculation makes use of the tight-binding linear muffin-tin orbitals (TB-LMTO) and is carried out in real space. I am able to derive the spin-polarized local densities of states for the impurity Cr and Fe respectively, which have peaks below the Fermi level. Charge transfers between the impurities and their neighbors also result in different distributions of magnetic moments for the two impurity systems, with the Cr having approximately 0.5μ B and the Fe atom having a negligible magnetic moment.


2021 ◽  
Author(s):  
Panagiotis Kl. Barkoutsos ◽  
Fotios Gkritsis ◽  
Pauline J. Ollitrault ◽  
Igor O. Sokolov ◽  
Stefan Woerner ◽  
...  

‘Alchemical’ quantum algorithm for the simultaneous optimisation of chemical composition and electronic structure for material design. By exploiting quantum mechanical principles this approach will boost drug discovery in the near future.


Sign in / Sign up

Export Citation Format

Share Document