scholarly journals High Quality Amorphous Silicon Germanium Alloy Solar Cells Made by Hot-wire CVD at 10 Å/s

2001 ◽  
Vol 664 ◽  
Author(s):  
Qi Wang ◽  
Eugene Iwaniczko ◽  
Jeffrey Yang ◽  
Kenneth Lord ◽  
Subhendu Guha

ABSTRACTHigh quality amorphous silicon germanium (a-SiGe:H) alloys have been obtained using the hot wire chemical vapor deposition (HWCVD) from a gas mixture of SiH4, GeH4, and H2 at a deposition rate of ∼10 Å/s. Solar cells in a SS/n-i-p/ITO configuration are evaluated in which the n- and i-layers are deposited by HWCVD at NREL and the microcrystalline p-layer by conventional RF glow discharge in a separate reactor by United Solar. Effects of hydrogen dilution and step-wise bandgap profile have been studied and optimized. The best cell has an average optical bandgap of 1.6 eV and incorporates multi-bandgap steps where the narrow-most bandgap is near the p-i interface. J-V characteristics are measured under AM 1.5 illumination with a λ>530 nm filter. The best initial power output obtained exceeds 4 mW/cm2, which is usually used as an indicator for a good quality middle-gap cell. Double-junction cells are made on textured Ag/ZnO back reflectors. The bottom cell uses the optimized a-SiGe:H alloy cell by HWCVD, and the top cell uses an optimized a-Si:H cell near the amorphous-to-microcrystalline transition by PECVD at ∼1 Å/s. The best double-junction cell made to date exhibits an initial AM 1.5 active-area efficiency of 11.7%, and a stable efficiency after 1000 hours of one sun light soaking of 9.6%.

1985 ◽  
Vol 49 ◽  
Author(s):  
H. Itozaki ◽  
N. Fujita ◽  
H. Hitotsuyanagi

AbstractHydrogenated amorphous silicon germanium (a—SiGe:H) films were deposited by photo—chemical vapor deposition (Photo—CVD) of SiH4 and GeH4 with mercury sensitizer. Their band gap was controlled from 0.9 eV to 1.9 eV by changing the gas ratio of SiH4 and GeH4. High quality opto—electrical properties have been obtained for thea—SiGe:H films by Photo—CVD. Hydrogen termination and microstructure of a-SiGe:H were investigated by infrared absorption and transmission electron microscopy. Ana—Si:H solar cell and an a—Si:H/a—SiGe:H stacked solar cell were made, each of which has conversion efficiency 5.3% and 5.1%, respectively.


2013 ◽  
Vol 22 (6) ◽  
pp. 068102 ◽  
Author(s):  
Guang-Hong Wang ◽  
Lei Zhao ◽  
Bao-Jun Yan ◽  
Jing-Wei Chen ◽  
Ge Wang ◽  
...  

1990 ◽  
Vol 192 ◽  
Author(s):  
Hideki Matsumura ◽  
Masaaki Yamaguchi ◽  
Kazuo Morigaki

ABSTRACTHydrogenated amorphous silicon-germanium (a-SiGe:H) films are prepared by the catalytic chemical vapor deposition (Cat-CVD) method using a SiH4, GeH4 and H4 gas mixture. Properties of the films are investigated by the photo-thermal deflection spectroscopy (PDS) and electron spin resonance (ESR) measurements, in addition to the photo-conductive and structural studies. It is found that the characteristic energy of Urbach tail, ESR spin density and other photo-conductive properties of Cat-CVD a-SiGe:H films with optical band gaps around 1.45 eV are almost equivalent to those of the device quality glow discharge hydrogenated amorphous silicon (a-Si:H).


1988 ◽  
Author(s):  
J.P. Conde ◽  
V. Chu ◽  
S. Tanaka ◽  
D.S. Shen ◽  
S. Wagner

Sign in / Sign up

Export Citation Format

Share Document