Self-Assembled 3-Mercaptopropyltrimethoxysilane (MPS) ON Ba0.5Sr0.5TiO3 as an Adhesion Layer for Microwave Devices

2001 ◽  
Vol 666 ◽  
Author(s):  
Carlos R. Cabrera ◽  
Joseph D. Warner ◽  
Carl H. Mueller ◽  
Fred Van Keuls ◽  
Félix A. Miranda ◽  
...  

ABSTRACTThe use of self-assembled monolayers in patterning, adhesion studies, corrosion protection, and electronic devices is a growing research field. Here we discuss the use of (3-mercaptopropyl)trimethoxysilane (MPS) as an adhesion layer in microwave components using metal-ferroelectric thin film-dielectric heterostructures. The MPS has been used as an adhesion layer between a ferroelectric thin film and gold (Au) in the development of tunable microwave components. The system studied was the metal/ferroelectric thin film/dielectric heterostructure with the MPS molecule as an adhesion layer between the metal and the ferroelectric thin film. Specifically, we have looked at the interface between the Au layer and the Ba0.5Sr0.5TiO3 (BSTO) ferroelectric thin film deposited on LaAlO3 (LAO). Typically, during metallization via e-beam evaporation, it is common to deposit a chrome or titanium adhesion layer (∼ 15 nm thick) between the Au and BSTO films. However, this underlayer may diffuse through the Au causing an increase of the RF losses of the device. Replacing the metal buffer layer interface with a self-assembled structure, such as MPS, can avoid the effect of inter- diffusion of chrome in the Au vapor deposit film. The surface modification of Ba0.5Sr0.5TiO3 (BSTO) thin film with MPS was studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The effectiveness of MPS self-assembled monolayers as an adhesion layer was determined by analyzing the performance of Au/MPS/BSTO/LAO interdigital capacitors as a function of dc voltage and temperature at 1 MHz.

2012 ◽  
Vol 3 ◽  
pp. 12-24 ◽  
Author(s):  
Hicham Hamoudi ◽  
Ping Kao ◽  
Alexei Nefedov ◽  
David L Allara ◽  
Michael Zharnikov

Self-assembled monolayers (SAMs) of nitrile-substituted oligo(phenylene ethynylene) thiols (NC-OPEn) with a variable chain length n (n ranging from one to three structural units) on Au(111) were studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and near-edge absorption fine-structure spectroscopy. The experimental data suggest that the NC-OPEn molecules form well-defined SAMs on Au(111), with all the molecules bound to the substrate through the gold–thiolate anchor and the nitrile tail groups located at the SAM–ambient interface. The packing density in these SAMs was found to be close to that of alkanethiolate monolayers on Au(111), independent of the chain length. Similar behavior was found for the molecular inclination, with an average tilt angle of ~33–36° for all the target systems. In contrast, the average twist of the OPEn backbone (planar conformation) was found to depend on the molecular length, being close to 45° for the films comprising the short OPE chains and ~53.5° for the long chains. Analysis of the data suggests that the attachment of the nitrile moiety, which served as a spectroscopic marker group, to the OPEn backbone did not significantly affect the molecular orientation in the SAMs.


2001 ◽  
Vol 695 ◽  
Author(s):  
G. Cui ◽  
M. Lane ◽  
K. Vijayamohanan ◽  
G. Ramanath

ABSTRACTAs the critical feature size in microelectronic devices continues to decrease below 100 nm, new barrier materials of > 5 nm thickness are required. Recently we have shown that self-assembled monolayers (SAMs) are attractive candidates that inhibit Cu diffusion into SiO2. For SAMs to be used as barriers in real applications, however, they must also promote adhesion at the Cu/dielectric interfaces. Here, we report preliminary quantitative measurements of interfacial adhesion energy and chemical binding energy of Cu/SiO2 interfaces treated with nitrogen-terminated SAMs. Amine-containing SAMs show a ~10% higher adhesion energy with Cu, while interfaces with Cu-pyridine bonds actually show degraded adhesion, when compared with that of the reference Cu/SiN interface. However, X-ray photoelectron spectroscopy (XPS) measurements show that Cu-pyridine and Cu-amine interactions have a factor-of-four higher binding energy than that of Cu-N bonds at Cu/SiN interfaces. The lack of correlation between adhesion and chemical binding energies is most likely due to incomplete coverage of SAMs.


2014 ◽  
Vol 104 (5) ◽  
pp. 051607 ◽  
Author(s):  
Peng Xiao ◽  
Linfeng Lan ◽  
Ting Dong ◽  
Zhenguo Lin ◽  
Wen Shi ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 2275-2279
Author(s):  
Elisabeth Hengge ◽  
Eva-Maria Steyskal ◽  
Rupert Bachler ◽  
Alexander Dennig ◽  
Bernd Nidetzky ◽  
...  

Surface modifications of nanoporous metals have become a highly attractive research field as they exhibit great potential for various applications, especially in biotechnology. Using self-assembled monolayers is one of the most promising approaches to modify a gold surface. However, only few techniques are capable of characterizing the formation of these monolayers on porous substrates. Here, we present a method to in situ monitor the adsorption and desorption of self-assembled monolayers on nanoporous gold by resistometry, using cysteine as example. During the adsorption an overall relative change in resistance of 18% is detected, which occurs in three distinct stages. First, the cysteine molecules are adsorbed on the outer surface. In the second stage, they are adsorbed on the internal surfaces and in the last stage the reordering accompanied by additional adsorption takes place. The successful binding of cysteine on the Au surface was confirmed by cyclic voltammetry, which showed a significant decrease of the double-layer capacitance. Also, the electrochemically controlled desorption of cysteine was monitored by concomitant in situ resistometry. From the desorption peak related to the (111) surface of the structure, which is associated with a resistance change of 4.8%, an initial surface coverage of 0.48 monolayers of cysteine could be estimated.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 101834-101839
Author(s):  
Wei Zhong ◽  
Ruohe Yao ◽  
Zhijian Chen ◽  
Linfeng Lan ◽  
Rongsheng Chen

Sign in / Sign up

Export Citation Format

Share Document