Novel Properties of a-SI:H Prepared by Dual Ion Beam Sputtering

1986 ◽  
Vol 70 ◽  
Author(s):  
H. Windischmann ◽  
R. W. Collins ◽  
J. M. Cavese

ABSTRACTFilms of a-Si:H were deposited by dual ion beam sputtering using a new configuration in which both the argon and hydrogen beam sources are directed at the silicon target. This geometry also permits independent control of the hydrogen and argon energy and particle flux. Infrared absorption mealurents show that even for high hydrogen concentrations, the 2000 cm-1 Si-H stretching band is dominant. This result is in contrast with the more conventional configuration in which the H soyrce is directed at the substrate, resulting in films with dominant 2100 cm-1 mode. This suggests that the precursors resulting in H-incorporation are different for the two configurations. In fact, IR reflectance and SIMS analysis of the silicon sputtering target reveal hydrogen is incorporated, peaking at about 30 Å below the target surface. A strong increase in the photo and dark dc conductivity occurs as the hydrogen ion enery is reduced below 30 eV, suggesting the importance of preventing high energy back-scattered H ion bombardment of thS film. At a H ion energy of 8eV, the values are 2x10-5 (AM1) and 2x10-9 (ohm-cm-1), respectively. Spectroscopic ellipsometry measurements of films reveal a Si-Si bond packing greater than that of low Hcontent a-Si prepared by LPCVD even up to H contents as high as 24%. Above 25% a microstructural transition is observed, verified by SEM, resulting in an increase in the density of voids, (which appears to be responsible for a sudden drop in the hydrogen-induced compressive stress) and accompanied by a shift in the dominant stretching mode energy.

1993 ◽  
Vol 310 ◽  
Author(s):  
A. Patel ◽  
D.A. Tossell ◽  
N.M. Shorrocks ◽  
R. W. Whatmore ◽  
R. Watton

AbstractLead based thin ferroelectric films have been prepared using both sol-gel and dual ion beam sputtering (DIBS) processes. Material compositions within the PbTiO3 and PLZT system have been deposited by both techniques onto metallised silicon. By using a standard sol-gel prepared solution, modified with acetylacetone and spin-coating, lµm thick fully perovskite layers, were obtained at low temperature (450°) with some preferred orientation. The grain size was in the range 0.2-0.4µm. A dielectric constant of 400 and a reversible pyroelectric coefficient of 1.2 × 10−4Cm−2K−1 were obtained. In contrast, a range of capping layers (SiO2, A12O3, BPSG) on silicon have been investigated using the DIBS process. Highly crystalline (100) and (111) films were readily produced at temperatures in excess of 550°, at a growth rate of 0.3µm/hour. Control of stoichiometry has also been studied in detail, by sputtering of a composite metal-ceramic target with a high energy Kr beam and by bombarding the growing film with a low energy oxygen ion-beam. Dielectric constants of 200-300, losses below 0.015 and resistivities above 1010Ωm have been achieved. A pyroelectric coefficient of the order of 2.5 × 10−4Cm−2K-1, pre-poled for a La-doped film on BPSG capped Si was obtained, which did not increase significantly on poling.


2003 ◽  
Vol 762 ◽  
Author(s):  
Z.B. Zhou ◽  
G.M. Hadi ◽  
R.Q. Cui ◽  
Z.M. Ding ◽  
G. Li

AbstractBased on a small set of selected publications on the using of nanocrystalline silicon films (nc-Si) for solar cell from 1997 to 2001, this paper reviews the application of nc-Si films as intrinsic layers in p-i-n solar cells. The new structure of nc-Si films deposited at high chamber pressure and high hydrogen dilution have characters of nanocrystalline grains with dimension about several tens of nanometer embedded in matrix of amorphous tissue and a high volume fraction of crystallinity (60~80%). The new nc-Si material have optical gap of 1.89 eV. The efficiency of this single junction solar cell reaches 8.7%. This nc-Si layer can be used not only as an intrinsic layer and as a p-type layer. Also nanocrystalline layer may be used as a seed layer for the growth of polycrystalline Si films at a low temperature.We used single ion beam sputtering methods to synthesize nanocrystalline silicon films successfully. The films were characterized with the technique of X-ray diffraction, Atomic Force Micrographs. We found that the films had a character of nc-amorphous double phase structure. Conductivity test at different temperatures presented the transportation of electrons dominated by different mechanism within different temperature ranges. Photoconductivity gains of the material were obtained in our recent investigation.


2014 ◽  
Vol 22 (25) ◽  
pp. 30983 ◽  
Author(s):  
Sushil Kumar Pandey ◽  
Vishnu Awasthi ◽  
Shruti Verma ◽  
Shaibal Mukherjee

2007 ◽  
Vol 61 (14-15) ◽  
pp. 2855-2858 ◽  
Author(s):  
J.P. Rivière ◽  
D. Texier ◽  
J. Delafond ◽  
M. Jaouen ◽  
E.L. Mathé ◽  
...  

2013 ◽  
Author(s):  
Hideshi Muto ◽  
Yukimitsu Ohshiro ◽  
Katsunori Kawasaki ◽  
Michihiro Oyaizu ◽  
Toshiyuki Hattori

2021 ◽  
Vol 61 (03) ◽  
Author(s):  
Jinlin Bai ◽  
Huasong Liu ◽  
Yugang Jiang ◽  
Lishuan Wang ◽  
Xiao Yang ◽  
...  

2005 ◽  
Vol 478 (1-2) ◽  
pp. 116-120 ◽  
Author(s):  
Jae Kwon Kim ◽  
Kyu Man Cha ◽  
Jung Hyun Kang ◽  
Yong Kim ◽  
Jae-Yel Yi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document