Theoretical scheme for the study of thermodynamic and transport properties of simple fluids at the liquid-glass transition line.

2002 ◽  
Vol 754 ◽  
Author(s):  
M. Robles ◽  
L. I. Uruchurtu ◽  
M. López de Haro

ABSTRACTIn this work we present a theoretical scheme to study the thermodynamic and transport properties of simple fluids at the liquid-glass transition line. This scheme makes use of a recent reformulation of the classical perturbation theory of liquids [M. Robles and M. López de Haro, Phys. Chem. Chem. Phys. 3, 5528 (2001)]. Using the hard-sphere fluid as a reference system our approach requires the choice of an equation of state for the hard-sphere system and a criterion to determine an effective (density and temperature dependent) diameter. Selecting the diameter in the same way as in the Mansoori-Canfield /Rasaiah-Stell variational perturbation theory and two different equations of state for the hard-sphere system, the liquid-glass transition line in the density vs. temperature plane for a Lennard-Jones fluid derived with our approach is shown to be in very good agreement with recent numerical simulations. The transition line in the pressure vs density plane and the value of the transport coefficients in the vicinity of the liquid-glass transition for the Lennard-Jones fluid are also examined.

2003 ◽  
Vol 62 (1) ◽  
pp. 56-62 ◽  
Author(s):  
M Robles ◽  
M. López de Haro

Author(s):  
Hiroki Nagashima ◽  
Takashi Tokumasu ◽  
Shin-ichi Tsuda ◽  
Nobuyuki Tsuboi ◽  
Mitsuo Koshi ◽  
...  

In this paper, we estimated the thermodynamic and transport properties of cryogenic hydrogen using classical molecular simulation to clarify the limit of classical method on the estimation of those properties of cryogenic hydrogen. Three empirical potentials, the Lennard-Jones (LJ) potential, two-center Lennard-Jones (2CLJ) potential, and modified Buckingham (exp-6) potential, and an ab initio potential model derived by the molecular orbital (MO) calculation were applied. Molecular dynamics (MD) simulations were performed across a wide density-temperature range. Using these data, the equation of state (EOS) was obtained by Kataoka’s method, and these were compared with NIST (National Institute of Standards and Technology) data according to the principle of corresponding states. Moreover, we investigated transport coefficients (viscosity coefficient, diffusion coefficient and thermal conductivity) using time correlation function. As a result, it was confirmed that the potential model has a large effect on the estimated thermodynamic and transport properties of cryogenic hydrogen. On the other hand, from the viewpoint of the principle of corresponding states, we obtained the same results from the empirical potential models as from the ab initio potential, showing that the potential model has only a small effect on the reduced EOS: the classical MD results could not reproduce the NIST data in the high-density region. This difference is thought to arise from the quantum effect in actual liquid hydrogen.


2000 ◽  
Vol 84 (2) ◽  
pp. 306-309 ◽  
Author(s):  
Barbara Coluzzi ◽  
Giorgio Parisi ◽  
Paolo Verrocchio

1989 ◽  
Vol 1 (39) ◽  
pp. 7163-7170 ◽  
Author(s):  
J L Barrat ◽  
W Gotze ◽  
A Latz

2013 ◽  
Vol 2013 ◽  
pp. 1-29 ◽  
Author(s):  
Seung-Kyo Oh

The three-parameter Lennard-Jones (12-6) potential function is proposed to calculate thermodynamic property (second virial coefficient) and transport properties (viscosity, thermal conductivity, and diffusion coefficient) of noble gases (He, Ne, Ar, Kr, and Xe) and their mixtures at low density. Empirical modification is made by introducing a reduced temperature-correction parameter τ to the Lennard-Jones potential function for this purpose. Potential parameters (σ, ε, and τ) are determined individually for each species when the second virial coefficient and viscosity data are fitted together within the experimental uncertainties. Calculated thermodynamic and transport properties are compared with experimental data by using a single set of parameters. The present study yields parameter sets that have more physical significance than those of second virial coefficient methods and is more discriminative than the existing transport property methods in most cases of pure gases and of gas mixtures. In particular, the proposed model is proved with better results than those of the two-parameter Lennard-Jones (12-6) potential, Kihara Potential with group contribution concepts, and other existing methods.


2013 ◽  
Vol 88 (3) ◽  
pp. 035005 ◽  
Author(s):  
Jiu-Xun Sun ◽  
Ling-Cang Cai ◽  
Qiang Wu ◽  
Ke Jin

Sign in / Sign up

Export Citation Format

Share Document