Electrochemical Deposition of Ba1-xSrxMoO4 Thin Films at Room Temperature

2002 ◽  
Vol 755 ◽  
Author(s):  
D.J. Gao ◽  
D.Q. Xiao ◽  
J. Bi ◽  
P. Yu ◽  
W. Zhang ◽  
...  

ABSTRACTAseries of well crystallized Ba1-xSrxMoO4 (0≤×≤1) films were prepared on molybdenum substrates in electrolytes embodied Ba2+ and Sr2+ions by electrochemical deposition at room temperature. The composition x is controlled through the starting concentrations of Ba2+ and Sr2+ ions. The measurements of XRD, SEM and XPS for these materials were carried out. The XRD analyses show that the films are good crystalline with single tetragonal structure of scheelite-type, and the a and c axes of the unit cell parameters of the films decrease with the increasing of Sr2+ concentration in the starting electrolytes; the XPS analyses reveal that the composition of the Ba1-xSrxMoO4 films is in agreement with stoichiometry, and the SEM photographs show that the films are condensed deposited.

2020 ◽  
Vol 35 (4) ◽  
pp. 247-261
Author(s):  
Paul J. Schields ◽  
Nicholas Dunwoody ◽  
David Field ◽  
Zachary Wilson

Ag3O was synthesized by jet-milling magnetron-sputtered Ag–Ag2O thin films. Heating the jet-milled powders in air and N2 from 40 to 148 °C at ambient pressure produced Ag3O-rich powders. The phase composition and unit-cell parameters of the jet-milled powders were measured as a function of temperature with in situ X-ray powder diffraction experiments from −186 to 293 °C. Ag3O was also produced by ball milling and sonicating jet-milled films at ambient conditions. The phase composition, unit-cell parameters, and thermal-reaction rates indicate nonstoichiometric Ag3O was produced from the reaction of metastable, nonstoichiometric Ag2O (cuprite structure) and ccp Ag. The thermal expansion of Ag3O is anisotropic; below 25 °C, the a-axis expansion is about twice the c-axis expansion resulting in a negative slope of c/a(T). The reversal of the sign of c/a(T) near 25 °C is dramatic. The thermal reaction is arrested when the temperature is rapidly increased from ambient to 130 °C. Ag3O is metastable and decreases its unit-cell volume during kinetic decomposition to Ag when heated above ambient temperature in air and nitrogen. The relative volume expansion of Ag3O is about 80% less than Ag at room temperature and below. The suite of nonstoichiometric Ag3O produced by heating displays a linear relation between c/a and unit-cell volume at room temperature. The c/a and unit-cell volume of a hydrothermally grown Ag3O single crystal reported in a published structure determination was the Ag-rich, low-volume end member of the linear series. The c/a and unit-cell volume are sensitive indicators of the oxygen content and state of disorder.


1997 ◽  
Vol 481 ◽  
Author(s):  
Patrick L. Smith ◽  
Richard Ortega ◽  
Bill Brennan

ABSTRACTThe formation of TiSi2 thin films using the SALICIDE process on doped and undoped silicon substrates was studied. XRD TEM, AES, RBS and four probe Rs were used to characterize the material. Unit cell parameters and energetics were determined. Results confirm electrical and chemical signatures consistent with the known C49 conversion to C54. However, XRD indicated a structurally different intermediate phase occurs during the C49 to C54 transformation. Modeling was performed based on C11b structure (14/mmm) type, with the Ti and Si atoms arranged similarly to those in MoSi2. The unit cell was determined to be a = 4.428 Å, b = 4.779 Å, c = 9.078 Å with a Fmmm space group and total pseudo-potential plane wave calculations based on crystallographic simulations of −103.96 ev/Atom.


2019 ◽  
Vol 1 (1) ◽  
pp. 147-153 ◽  
Author(s):  
Christophe Tenailleau ◽  
Sigalit Aharon ◽  
Bat-El Cohen ◽  
Lioz Etgar

In this work, we performed a detailed study of the phase transformations and structural unit cell parameters of CsPbBr3 nanoparticles (NPs) and thin films.


2007 ◽  
Vol 63 (3) ◽  
pp. o1464-o1466 ◽  
Author(s):  
Wiesław Prukała ◽  
Bogdan Marciniec ◽  
Maciej Kubicki

The crystal structure of tetra-n-butylammonium iodide, C16H36N+·I−, has been redetermined at room temperature and at 100 (1) K. In the low-quality (R = 0.142) room-temperature determination by Wang, Habenschuss, Xenopoulos & Wunderlich [Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A (1995), 264, 115–129], this structure was described as crystallizing in the space group C2 with Z′ = 2. Our results prove that the correct space group is C2/c (with the same unit-cell parameters as in the original determination) at both temperatures. In the crystal structure, the iodide anions fill the voids in the grid-like cationic structure. Weak C—H...I interactions (eight per anion) strengthen this packing.


1999 ◽  
Vol 14 (4) ◽  
pp. 280-283 ◽  
Author(s):  
A. Rafalska-Łasocha ◽  
W. Łasocha ◽  
M. Michalec

The X-ray powder diffraction patterns of anilinium trimolybdate tetrahydrate, (C6H5NH3)2Mo3O10·4H2O, and anilinium trimolybdate dihyhydrate, (C6H5NH3)2Mo3O10·2H2O, have been measured in room temperature. The unit cell parameters were refined to a=11.0670(7) Å, b=7.6116(8) Å, c=25.554(3) Å, space group Pnma(62) and a=17.560(2) Å, b=7.5621(6) Å, c=16.284(2) Å, β=108.54(1)°, space group P21(4) or P21/m(11) for orthorhombic anilinium trimolybdate tetrahydrate and monoclinic anilinium trimolybdate dihydrate, respectively.


2013 ◽  
Vol 9 (3) ◽  
pp. 2005-2022 ◽  
Author(s):  
Fayçal Ben Tahar ◽  
Chakib Hrizi ◽  
Slaheddine Chaabouni ◽  
Nassira Chniba-Boudjada ◽  
Nicolas Ratel Ramond ◽  
...  

Synthesis, crystal structure, vibrational and dielectric properties of [C7H18N2]2ClBiCl6.H2O are reported. The compound crystallizes at room temperature in the orthorhombic system, space group P212121, with the following unit cell parameters : a = 7.5500(6) Å, b = 18.3780(2) Å, c = 19.8980(13) Å, V = 2760.9(4) Å3 and four molecules per unit cell. The structure has been solved by three-dimensional Patterson synthesis and refined by least-squares analysis (R1 = 0.0463, wR2 = 0.0764). The crystal structure of the title compound, [C7H18N2]2ClBiCl6.H2O consists of 2-(2-Aminoethyl)-1-methylpyrrolidinium cations, [BiCl6]3- anions, Cl- anions and free water molecules. The Bi(III) cation is coordinated by six Cl- anions in slightly distorsed octahedral geometry. In the crystal, extensive intermolecular N-H…Cl hydrogen bonds occur. The charge-transfer (CT) interactions between 2-(2-Aminoethyl)-1-methylpyrrolidinium cation and the anionic hosts have been revealed by structural analysis and UV-vis spectroscopy. The dielectric properties have been investigated at temperature range from 100 to 300 K at various frequencies (1 KHz – 1 MHz). The evolution of dielectric constant as a function of temperature and frequency of pellet has been investigated in order to determine some related parameters.


2009 ◽  
Vol 87 (4) ◽  
pp. 345-348 ◽  
Author(s):  
Mahesha K. Upadhya ◽  
N. K. Udayashankar

The growth of antimony thiourea bromide monohydrate (ATBM) single crystals by evaporation technique at room temperature is reported here. Antimony thiourea bromide monohydrate crystallizes in the orthorhombic space group Cmca with unit cell parameters a = 12.320(7) Å, b = 11.668(7) Å, c = 18.615(11), and z = 8. The structure has been solved by direct methods and refined to a final R value of 0.0239.


Author(s):  
А.Ф. Хазиева ◽  
В.И. Насиров ◽  
Ю.Г. Асадов ◽  
Ю.И. Алыев ◽  
С.Г. Джабаров ◽  
...  

AbstractPolymorphic transformations in Rb_0.975Cs_0.025NO_3, Rb_0.950Cs_0.05NO_3, and Rb_0.90Cs_0.1NO_3 crystals grown by us have been studied by the X-ray diffraction method. Four different modifications are found for crystals in the range from room temperature to the melting point. The transformation temperatures and the unit-cell parameters are determined for the crystals of these modifications.


2013 ◽  
Vol 9 (2) ◽  
pp. 1975-1987
Author(s):  
Ben Tahar Fayçal ◽  
Perez Olivier ◽  
Slaheddine Chaabouni

An hepta (pyridinium) bis (hexachlorobismuthate (III)) nitrate, (C5H6N)7(BiCl6)2(NO3) crystallizes at room temperature in the monoclinic system, space group P21/n, with the following unit-cell parameters: a = 9.555(1) Å, b = 16.847(1) Å, c = 32.522(1) Å, β = 94.37° , V = 5219.8 Å3 and four molecules per unit cell. Its crystal structure was determined and refined down to R1 = 0.0504, wR2 = 0.0667. The structure of the title compound, (C5H6N)7(BiCl6)2(NO3) consists of seven monoprotonated pyridinium (C5H6N)+ cations, two independent octahedron [BiCl6]3- and an isolated NO3- anion. These entities are linked together through N-H.....Cl and N-H.....O hydrogen bonds, originating from the (C5H6N)+ groups and the isolated anion of nitrate to forming a three dimensional network.


Clay Minerals ◽  
1979 ◽  
Vol 14 (4) ◽  
pp. 273-283 ◽  
Author(s):  
E. Murad

Abstractβ-FeOOH (akaganéite) was prepared by slow hydrolysis of an FeCl3 solution. X-ray diffraction measurements gave refined unit-cell parameters of a=10·535 Å, c=3·030 Å.Two doublets with δ(Fe)=0·39, ΔEQ=0·95, and δ=0·38, ΔEQ=0·55 mm s−1, respectively, can be fitted to the Mössbauer spectrum taken at room temperature.Magnetically split Mössbauer spectra were registered at 135 and 4°K. These can be resolved into at least three superimposed sextets, corresponding to different Fe3+ sites in the β-FeOOH structure. At 4°K a three sextet model gives parameters of δ=0·36, ΔEQ=0·90, Hi=473; δ=0·35, ΔEQ=0·30, Hi=479; and δ=0·37, ΔEQ=−0·05 mm s−1, Hi=486kOe, respectively.The complexity of the Mössbauer spectra of β-FeOOH limits the usefulness of this method as a tool for the identification of akaganéite in composite natural samples.


Sign in / Sign up

Export Citation Format

Share Document