Temperature Dependent Raman Scattering and Dielectric Permittivity Measurements of Pb1−x Srx TiO3 Films

2003 ◽  
Vol 784 ◽  
Author(s):  
V. M. Naik ◽  
M. Smith ◽  
H. Dai ◽  
P. Talagala ◽  
R. Naik ◽  
...  

ABSTRACTPb1-x Srx TiO3 (x = 0 to 1.0) films of thickness ∼ 4 μ m have been prepared on sapphire and Pt substrates by metalorganic decomposition (MOD) method. X-ray diffraction results show that the films are polycrystalline with a perovskite tetragonal phase at room temperature for x < 0.5 and a cubic phase for x > 0.5. Room temperature Raman spectra show a systematic variation of lattice vibrational modes with x. The most notable changes in the Raman spectra with x are the decrease in the splitting of A1(3TO) and E(3TO) modes and the disappearance of E(3TO) mode at x ∼ 0.6. Although the x-ray diffraction peaks for films with x > 0.5 show a cubic phase at room temperature, the Raman spectra show the characteristic phonon modes of a tetragonal phase even at x = 0.7. The dielectric permittivity versus temperature measurements for films with x ≤ 0.7 show a broad dielectric anomaly corresponding to a diffuse ferroelectric to paraelectric phase transition. The phase transition temperature (Tc) values are consistently lower than the corresponding bulk ceramic alloys. Furthermore, Tc are also determined by monitoring the temperature dependence of the splitting between E(3TO) and A1(3TO) phonon modes in the Raman spectra of Pb1-x Srx TiO3 films for x ≤ 0.6. There has been good agreement between the two methods.

2008 ◽  
Vol 23 (S1) ◽  
pp. S70-S74 ◽  
Author(s):  
L. M. Acuña ◽  
R. O. Fuentes ◽  
D. G. Lamas ◽  
I. O. Fábregas ◽  
N. E. Walsöe de Reca ◽  
...  

Crystal structure of compositionally homogeneous, nanocrystalline ZrO2–CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2. ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t′-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t′-to-t″ followed by t″-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t″-form, transforms directly to the cubic phase. The results suggest that t′-to-t″ transition is of first order, but t″-to-cubic seems to be of second order.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


Ceramics ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Reginaldo Muccillo ◽  
Daniel de Florio ◽  
Eliana Muccillo

Compositions of (ZrO2)0.92(Y2O3)0.08 (zirconia: 8 mol % yttria—8YSZ) and (CeO2)0.8(Sm2O3)0.2 (ceria: 20 mol % samaria—SDC20) ceramic powders were prepared by attrition milling to form an equimolar powder mixture, followed by uniaxial and isostatic pressing. The pellets were quenched to room temperature from 1200 °C, 1300 °C, 1400 °C and 1500 °C to freeze the defects configuration attained at those temperatures. X-ray diffraction analyses, performed in all quenched pellets, show the evolution of the two (8YSZ and SDC20) cubic fluorite structural phases to a single phase at 1500 °C, identified by Rietveld analysis as a tetragonal phase. Impedance spectroscopy analyses were carried out in pellets either quenched or slowly cooled from 1500 °C. Heating the quenched pellets to 1000 °C decreases the electrical resistivity while it increases in the slowly cooled pellets; the decrease is ascribed to annealing of defects created by lattice micro-tensions during quenching while the increase to partial destabilization of the tetragonal phase.


Author(s):  
Alexander M. Antipin ◽  
Olga A. Alekseeva ◽  
Natalia I. Sorokina ◽  
Alexandra N. Kuskova ◽  
Michail Yu. Presniakov ◽  
...  

The La2Mo2O9(LM) and Pr2Mo2O9(PM) single crystals are studied using precision X-ray diffraction and high-resolution transmission microscopy at room temperature. The crystal structures are determined in the space groupP213. La and Pr atoms, as well as Mo1 and O1 atoms, are located in the vicinity of the threefold axes rather than on the axes as in the high-temperature cubic phase. In both structures studied, the O2 and O3 positions are partially occupied. The coexistence of different configurations of the Mo coordination environment facilitates the oxygen-ion migration in the structure. Based on the X-ray data, the activation energies of O atoms are calculated and the migration paths of oxygen ions in the structures are analysed. The conductivity of PM crystals is close to that of LM crystals. The O2 and O3 atoms are the main contributors to the ion conductivity of LM and PM.


1999 ◽  
Vol 4 (S1) ◽  
pp. 239-243
Author(s):  
J.B. Li ◽  
Hui Yang ◽  
L.X. Zheng ◽  
D.P. Xu ◽  
Y.T. Wang

We report on the growth of high-quality cubic phase InGaN on GaAs by MOCVD. The cubic InGaN layers are grown on cubic GaN buffer layers on GaAs (001) substrates. The surface morphology of the films are mirror-like. The cubic nature of the InGaN films is obtained by X-ray diffraction (XRD) measurements. The InGaN layers show strong photoluminescence (PL) at room temperature. Neither emission peak from wurtzite GaN nor yellow luminescence is observed in our films. The highest In content as determined by XRD is about 17% with an PL emission wavelength of 450 nm. The FWHM of the cubic InGaN PL peak are 153 meV and 216 meV for 427 nm and 450 nm emissions, respectively. It is found that the In compositions determined from XRD are not in agreement with those estimated from PL measurements. The reasons for this disagreement are discussed.


1965 ◽  
Vol 9 ◽  
pp. 170-189 ◽  
Author(s):  
M. Stammler ◽  
R. Bruenner ◽  
W. Schmidt ◽  
D. Orcutt

AbstractThe thermal transformations which take place in solid methyl-substituted ammonium perchlorates have been studied using high-temperature X-ray diffraction and differential thermal analysis techniques. In the temperature range from 20°C to their decomposition temperature (above 300°C), ammonium perchlorate and tetramethyl ammonium perchlorate undergo only one enantiomorphic phase transition, namely at 240 and 340°C (with decomposition), respectively. This I—II transition is ascribed to the beginning of the free rotation of the ClO4− ions. The rotation of the cations, however, begins below room temperature. If the symmetry of the cation is lowered by having both methyl groups and hydrogens arranged around the nitrogen (as in monomethyl, dimethyl, and trimethyl ammonium perchlorates), there is an additional enantiomorphic phase transition. This I—II transformation is ascribed to the rotation of the cations which have, in the partially substituted ions, two sets of non-equivalent symmetry axes (different moments of inertia). The temperatures of transformation are discussed in terms of the space requirements for rotation. Symmetries and cell dimensions of some modifications were determined.


2006 ◽  
Vol 62 (5) ◽  
pp. 768-774 ◽  
Author(s):  
Michel Evain ◽  
Luca Bindi ◽  
Silvio Menchetti

The crystal structure of a Se-rich antimonpearceite has been solved and refined by means of X-ray diffraction data collected at temperatures above (room temperature) and below (120 K) an ionic conductivity-induced phase transition. Both structure arrangements consist of the stacking of [(Ag,Cu)6(Sb,As)2(S,Se)7]2− A (A′) and [Ag9Cu(S,Se)2Se2]2+ B (B′) module layers in which Sb forms isolated SbS3 pyramids typically occurring in sulfosalts; copper links two S atoms in a linear coordination, and silver occupies sites with coordination ranging from quasi-linear to almost tetrahedral. In the ionic-conducting form, at room temperature, the silver d 10 ions are found in the B (B′) module layer along two-dimensional diffusion paths and their electron densities described by means of a combination of a Gram–Charlier development of the atomic displacement factors and a split-atom model. The structure resembles that of pearceite, except for the presence of both specific (Se) and mixed (S, Se) sites. In the low-temperature `ordered' phase at 120 K the silver d 10 ions of the B (B′) module layer are located in well defined sites with mixed S—Se coordination ranging from quasi-linear to almost tetrahedral. The structure is then similar to that of 222-pearceite but with major differences, specifically its cell metric, symmetry and local arrangement in the B (B′) module layer.


Author(s):  
E. Louise R. Robins ◽  
Michela Brunelli ◽  
Asiloé J. Mora ◽  
Andrew N. Fitch

AbstractDSC and high-resolution powder X-ray diffraction measurements in the range 295 K–100 K show that RS-thiocamphor undergoes two phase transitions. The first, at around 260 K on cooling, is from the room-temperature body-centred-cubic phase to a short-lived intermediate. At 258 K the low-temperature form starts to appear. The crystal structure of the latter is orthorhombic, space group


2011 ◽  
Vol 328-330 ◽  
pp. 1127-1130 ◽  
Author(s):  
Yong Liu ◽  
Rui Qing Chu ◽  
Zhi Jun Xu ◽  
Qian Chen ◽  
Lin Shao ◽  
...  

Lead-free piezoceramics (K0.5Na0.5)0.94-3xLi0.06LaxNbO3were synthesized by the conventional solid-state reaction process. The effect of La-doping on the phase structure and electrical properties of (K0.5Na0.5)0.94Li0.06NbO3ceramics was investigated. X-ray diffraction analysis showed that the crystal structure of the ceramics changed from coexistence of orthorhombic and tetragonal phases to pseudo-cubic phase with the increase of La-doping level, and the change of phase structure seriously weakened the dielectric, ferroelectric and piezoelectric properties of the ceramics. In addition, it was found that the La-doping improved the density of the ceramics and the ceramics became dense. Meanwhile, the ceramics with La-doping displayed a relative lower loss tangent (tanδ) from room temperature to approximately 350°C.


Sign in / Sign up

Export Citation Format

Share Document