Atomic Scale Modeling of ZrO2 and HfO2 Atomic Layer Deposition on Silicon: Linking Density Functional Theory and Kinetic Monte Carlo

2003 ◽  
Vol 786 ◽  
Author(s):  
A. Estève ◽  
L. Jeloaica ◽  
G. Mazaleyrat ◽  
A. Dkhissi ◽  
M. Djafari Rouhani ◽  
...  

ABSTRACTThe present paper establishes some required elements from both Quantum calculations and Kinetic Monte Carlo Modeling to perform full atomic scale simulations of Zirconia and Hafnia Atomic Layer Deposition (ALD) on Silicon technology process. In this view, we present quantum cluster calculations that investigate reaction pathways being part of the chemical reactions taking place at the different stages of the ALD growth. In particular, we detail ongoing research effort on the hydrolysis of adsorbed HfCl3 and ZrCl3 on ultra-thin SiO2. At very low water dose, the hydrolysis appears to be un-favourable. The complete reaction pathways with their associated activation barrier are detailed. We then show that actual available mechanisms emanating from quantum calculations are not sufficient to give a coherent picture of the layer structuring through a Kinetic Monte Carlo technique with the hope of giving new directions for further quantum studies.

2018 ◽  
Vol 122 (47) ◽  
pp. 27044-27058 ◽  
Author(s):  
Timo Weckman ◽  
Mahdi Shirazi ◽  
Simon D. Elliott ◽  
Kari Laasonen

2021 ◽  
Author(s):  
Matthew Lawson

This dissertation implements first-principles calculations to understand the nucleation mechanisms for atomic layer deposition (ALD) of molybdenum disulfide (MoS2) using MoF6 and H2S precursors. ALD is a self-limiting process that can deposit a range of materials at the nanoscale, while maintaining chemical stoichiometry, atomic scale thickness control, and can conform to high-aspect ratio substrate designs. ALD is extremely sensitive to surface chemistry and morphology; therefore, it is critical to understand how these factors control deposition. Density functional theory (DFT) was used to understand what factors can control the nucleation for ALD of MoS2 using MoF6 and H2S. Surface hydroxyls on oxide substrates help facilitate the formation of ionic MFx (M = metal, x = 1, 2, 3) species, which thermodynamically drive the first-half cycle of ALD. DFT calculations were supported by experimental measurements to validate computational predictions. DFT and experiment both confirmed that there are different types of nucleation mechanisms during ALD of MoS2. The types of mechanisms depend on which precursor is introduced, and highlights the complexities during nucleation of MoS2 during ALD.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Dan Xu ◽  
Junqing Yin ◽  
Ya Gao ◽  
Di Zhu ◽  
Shuyuan Wang

Nanoscale ◽  
2017 ◽  
Vol 9 (32) ◽  
pp. 11410-11417 ◽  
Author(s):  
D. Zhang ◽  
M. J. Quayle ◽  
G. Petersson ◽  
J. R. van Ommen ◽  
S. Folestad

Few atomic surface layers via atomic layer deposition under near ambient conditions significantly altered dissolution and dispersion of pharmaceutical particles.


RSC Advances ◽  
2020 ◽  
Vol 10 (28) ◽  
pp. 16584-16592
Author(s):  
Kyungtae Lee ◽  
Youngseon Shim

Energy diagram of reaction pathways for decomposition of different aminosilane precursors on a WO3 (001) surface.


Sign in / Sign up

Export Citation Format

Share Document