Atomic scale surface engineering of micro- to nano-sized pharmaceutical particles for drug delivery applications

Nanoscale ◽  
2017 ◽  
Vol 9 (32) ◽  
pp. 11410-11417 ◽  
Author(s):  
D. Zhang ◽  
M. J. Quayle ◽  
G. Petersson ◽  
J. R. van Ommen ◽  
S. Folestad

Few atomic surface layers via atomic layer deposition under near ambient conditions significantly altered dissolution and dispersion of pharmaceutical particles.

2021 ◽  
Author(s):  
Jerome W. F. Innocent ◽  
Mari Napari ◽  
Andrew L. Johnson ◽  
Thom R. Harris-Lee ◽  
Miriam Regue ◽  
...  

Here we report the development of a new scalable and transferable plasma assisted atomic layer deposition (PEALD) process for the production of uniform, conformal and pinhole free NiO with sub-nanometre control on a commercial ALD reactor.


2017 ◽  
Vol 5 (21) ◽  
pp. 10127-10149 ◽  
Author(s):  
Xiangbo Meng

This review summarized the research efforts using atomic layer deposition for high-performance sodium-ion batteries.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Dan Xu ◽  
Junqing Yin ◽  
Ya Gao ◽  
Di Zhu ◽  
Shuyuan Wang

Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1085 ◽  
Author(s):  
Kemelbay ◽  
Tikhonov ◽  
Aloni ◽  
Kuykendall

As one of the highest mobility semiconductor materials, carbon nanotubes (CNTs) have been extensively studied for use in field effect transistors (FETs). To fabricate surround-gate FETs— which offer the best switching performance—deposition of conformal, weakly-interacting dielectric layers is necessary. This is challenging due to the chemically inert surface of CNTs and a lack of nucleation sites—especially for defect-free CNTs. As a result, a technique that enables integration of uniform high-k dielectrics, while preserving the CNT’s exceptional properties is required. In this work, we show a method that enables conformal atomic layer deposition (ALD) of high-k dielectrics on defect-free CNTs. By depositing a thin Ti metal film, followed by oxidation to TiO2 under ambient conditions, a nucleation layer is formed for subsequent ALD deposition of Al2O3. The technique is easy to implement and is VLSI-compatible. We show that the ALD coatings are uniform, continuous and conformal, and Raman spectroscopy reveals that the technique does not induce defects in the CNT. The resulting bilayer TiO2/Al2O3 thin-film shows an improved dielectric constant of 21.7 and an equivalent oxide thickness of 2.7 nm. The electrical properties of back-gated and top-gated devices fabricated using this method are presented.


Author(s):  
Chris Y. Yuan ◽  
David A. Dornfeld

Atomic layer deposition (ALD) is a promising nanotechnology for wide applications in microelectronics manufacturing due to its ability to control layer growth at atomic scale. Sustainability of ALD technology needs to be quantitatively investigated in this early development stage to improve its economic and environmental performance. In this paper, we present an integrated sustainability analysis of ALD technology through material and energy flow analyses. The study is performed on the ALD of Al2O3 high-κ dielectric film through trimethylaluminum and water binary reactions. The precursor utilizations, methane emissions, and nanowaste generations from the ALD process are all quantitatively studied. Energy flow analysis demonstrates that the ALD process energy consumption is mainly determined by the ALD cycle time rather than the process temperature. Scale-up performance of the ALD technology is also studied for both emission generations and energy consumptions. Strategies and methods for improving the sustainability performance of the ALD technology are suggested based on the analysis.


2020 ◽  
Vol 6 (7) ◽  
pp. 1765-1785
Author(s):  
Jieun Lee ◽  
In S. Kim ◽  
Moon-Hyun Hwang ◽  
Kyu-Jung Chae

This review article provides a summary of the application of ALD and electrospinning in membrane processes for water treatment and insight into the technological challenges and future perspectives for their wider application in the membrane industry.


Sign in / Sign up

Export Citation Format

Share Document