Mechanical Properties Of Polyaniline / Multi-walled Carbon Nanotube Composite Films

2003 ◽  
Vol 791 ◽  
Author(s):  
P. C. Ramamurthy ◽  
W. R. Harrell ◽  
R. V. Gregory ◽  
B. Sadanadan ◽  
A. M. Rao

ABSTRACTHigh molecular weight polyaniline / multi-walled carbon nanotube composite films were fabricated using solution processing. Composite films with various weight percentages of multiwalled carbon nanotubes were fabricated. Physical properties of these composites were analyzed by thermogravimetric analysis, tensile testing, and scanning electron microscopy. These results indicate that the addition of multiwalled nanotubes to polyaniline significantly enhances the mechanical properties of the films. In addition, metal–semiconductor (composite) (MS) contact devices were fabricated, and it was observed that the current level in the films increased with increasing multiwalled nanotube content. Furthermore, it was observed that polyaniline containing one weight percent of carbon nanotubes appears to be the most promising composition for applications in organic electronic devices.

2019 ◽  
Vol 54 (17) ◽  
pp. 2353-2363
Author(s):  
SH Mussavi Rizi ◽  
M Ghatee

This paper reports the effects of adding carbon nanotubes on the mechanical properties of zirconia-toughened alumina thick films prepared by tape casting. Polyvinylpyrrolidone, polyvinyl alcohol, and glycerin were used as dispersant, binder, and plasticizer, respectively. The microstructure and phase content of the samples were studied using scanning electron microscopy and X-ray diffraction methods, respectively. Mechanical properties of thick composite films were investigated by microhardness and nanoindentation methods. It was determined that polyvinylpyrrolidone can be used as a dispersant for carbon nanotube, alumina, and zirconia particles; tape casting can produce thick films with homogeneous phase distribution, and that adding up to 0.01 wt.% carbon nanotube enhanced the zirconia-toughened alumina hardness by more than 30%, and fracture toughness about 40%. Increasing carbon nanotube content over 0.01 wt.% up to 0.1 wt.% increases microhardness and nanohardness but does not affect fracture toughness significantly.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Waris Obitayo ◽  
Tao Liu

The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.


2018 ◽  
pp. 1701003 ◽  
Author(s):  
Jasna Mannayil ◽  
Shijeesh Methattel Raman ◽  
Jayalekshmi Sankaran ◽  
Reshmi Raman ◽  
Jayaraj Madambi Kunjukutan Ezhuthachan

2019 ◽  
Vol 30 (23) ◽  
pp. 235702
Author(s):  
Qian Liang ◽  
Xiangdong Xu ◽  
Huaxin Zhou ◽  
Junsung Park ◽  
Jimmy Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document