scholarly journals A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Waris Obitayo ◽  
Tao Liu

The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

2003 ◽  
Vol 791 ◽  
Author(s):  
P. C. Ramamurthy ◽  
W. R. Harrell ◽  
R. V. Gregory ◽  
B. Sadanadan ◽  
A. M. Rao

ABSTRACTHigh molecular weight polyaniline / multi-walled carbon nanotube composite films were fabricated using solution processing. Composite films with various weight percentages of multiwalled carbon nanotubes were fabricated. Physical properties of these composites were analyzed by thermogravimetric analysis, tensile testing, and scanning electron microscopy. These results indicate that the addition of multiwalled nanotubes to polyaniline significantly enhances the mechanical properties of the films. In addition, metal–semiconductor (composite) (MS) contact devices were fabricated, and it was observed that the current level in the films increased with increasing multiwalled nanotube content. Furthermore, it was observed that polyaniline containing one weight percent of carbon nanotubes appears to be the most promising composition for applications in organic electronic devices.


2011 ◽  
Vol 22 (18) ◽  
pp. 2155-2159 ◽  
Author(s):  
Y. Miao ◽  
L. Chen ◽  
Y. Lin ◽  
R. Sammynaiken ◽  
W. J. Zhang

The use of carbon nanotubes (CNTs) for construction of sensors is promising. This is due to some unique characteristics of CNTs. In recent years, strain sensors built from CNT composite films have been developed; however, their low piezoresistive sensitivity (gauge factor (GF)) in in-plane strain detection is a concern compared with other strain sensors. This article reports an experimental discovery of the superior piezoresistive response of a CNT film that is free of surfactants, known as the pure CNT film. The mechanism for the high GF with the pure CNT film strain sensors is also discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Limei Ma

The integration of fiber materials into modern pottery creation is an attempt to explore its boundaries as a specific material and art form. Fiber materials, such as fabric and paper, are not resistant to high temperatures, and the clay attached to them can retain the surface texture, texture, and original three-dimensional form of the fiber materials intact during the kiln firing process, making up for the defects of single material molding and maintaining the visual effect of ultrathin and highly translucent works. The light source inside the work is more conducive to creating a specific artistic atmosphere. The purpose of this paper is to explore how fiber materials become the basis of ceramic works and the source of decorative expression, so that this expression and process can be systematically analyzed and interpreted in the application of ceramic art creation. Along with the rapid development of nanotechnology, electronics, and optical technology, people’s clothing fabrics have been increasing in demand in terms of function and appearance. This paper focuses on the research and development of fiber textiles from the field of science and technology and discusses the current status of fiber textiles and the possibility of combining fiber art with science and technology. In this paper, wood cellulose-multiwalled carbon nanotube/wood cellulose composite films were prepared, as well as wood cellulose films and wood cellulose/multiwalled carbon nanotube composite films. The optimal reaction time for the preparation of the films was 2 h, and the optimal reaction temperature was 70°C. Experimental results show that the dispersibility of multilayer carbon nanotubes in wood cellulose multilayer carbon nanotubes/wood cellulose composite films in wood cellulose multilayer carbon nanotubes composite films is superior. If the amount of multilayered carbon nanotubes was 3 wt%, the fracture point extension and accessibility of the wood cellulose multilayer carbon nanotubes/wood cellulose composite film are 12.2% and 106.7 MPa, respectively. It is 93.7%, respectively. 10.7% is higher than wood cellulose/multilayered carbon nanotube composite films.


Author(s):  
Tarun Singla ◽  
Amrinder Pal Singh ◽  
Suresh Kumar ◽  
Gagandeep Singh ◽  
Navin Kumar

The usage of nano phase materials for strain sensing applications has attracted attention due to their unique electromechanical properties. The nanocomposite as piezo-resistive films provides an alternative for the realization of strain sensors with high sensitivity than the conventional sensors based on metal and semiconductor strain gauges. In this work, polymer based nano-composite with carbon nanotubes as filler were developed. The multi-walled carbon nanotubes/polystyrene (MWCNTs/PS) nano-composite films were prepared with different wt.% of CNTs using solution mixing method. Field emission scanning electron microscopy technique was carried out to investigate the morphology and dispersion of CNTs in the nano-composite sample. Fourier transform infrared spectroscopy technique was employed to characterize the bonds present in the prepared nano-composite. The electrical response of the composite films was recorded in the form of current-voltage (I-V) characteristics using source meter. The electromechanical response of the nano-composite films with different wt.% of filler CNTs was recorded by applying uni-axial tensile load. The electromechanical responses were then analyzed to obtain gauge factor for the strain sensitivity. The highest gauge factor of 133 was recorded during tensile testing of the nano-composite with 3 wt.% of CNTs fillers.


2017 ◽  
Vol 909 ◽  
pp. 237-242
Author(s):  
Gundati Sudheer Kumar ◽  
D. Vishnupriya ◽  
Ralph Antao ◽  
T. Umasankar Patro

Acid-functionalized carbon nanotube (fCNT)-poly (vinylidene fluoride) (PVDF) composite films with different CNT contents (0-0.5wt%) were prepared by melt-blending followed by compression molding. The electrical resistance (R) of the composite films under tensile loading was measured by a two-probe method using a custom made equipment connected to digital multimeter. The films (0.35 and 0.5wt% fCNT composites) showed exponential increases in R with displacement after attaining the elastic strain. Further, the change in resistance divided by resistance (ΔR/R) showed a linear increase with strain (ε). The slope of the linear region is found to be higher for 0.35wt% fCNT composite (5.4) as compared to 0.5wt% fCNT composite (3.4), indicating a better sensitivity in the former case. This may be due to less number of electrical conducting paths in case of 0.35fCNT composite. On account of the results obtained, the composites promise as potential candidates for strain sensing in health monitoring.


2019 ◽  
Vol 54 (17) ◽  
pp. 2353-2363
Author(s):  
SH Mussavi Rizi ◽  
M Ghatee

This paper reports the effects of adding carbon nanotubes on the mechanical properties of zirconia-toughened alumina thick films prepared by tape casting. Polyvinylpyrrolidone, polyvinyl alcohol, and glycerin were used as dispersant, binder, and plasticizer, respectively. The microstructure and phase content of the samples were studied using scanning electron microscopy and X-ray diffraction methods, respectively. Mechanical properties of thick composite films were investigated by microhardness and nanoindentation methods. It was determined that polyvinylpyrrolidone can be used as a dispersant for carbon nanotube, alumina, and zirconia particles; tape casting can produce thick films with homogeneous phase distribution, and that adding up to 0.01 wt.% carbon nanotube enhanced the zirconia-toughened alumina hardness by more than 30%, and fracture toughness about 40%. Increasing carbon nanotube content over 0.01 wt.% up to 0.1 wt.% increases microhardness and nanohardness but does not affect fracture toughness significantly.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2365
Author(s):  
Francesco La Malfa ◽  
Salvatore Puce ◽  
Francesco Rizzi ◽  
Massimo De Vittorio

Soft compliant strain gauges are key devices for wearable applications such as body health sensor systems, exoskeletons, or robotics. Other than traditional piezoresistive materials, such as metals and doped semiconductors placed on strain-sensitive microsystems, a class of soft porous materials with exotic mechanical properties, called auxetics, can be employed in strain gauges in order to boost their performance and add functionalities. For strain electronic read-outs, their polymeric structure needs to be made conductive. Herein, we present the fabrication process of an auxetic electrode based on a polymeric nanocomposite. A multiwalled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) is fabricated on an open-cell polyurethane (PU) auxetic foam and its effective usability as an electrode for strain-gauge sensors is assessed.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Zhaohua Jiang ◽  
Yongjun Xu

The low dielectric constant of the nonpolar polymer poly(1-butene) (PB-1) limits its application as a diaphragm element in energy storage capacitors. In this work, Ba(Zr0.2Ti0.8)O3-coated multiwalled carbon nanotubes (BZT@MWCNTs) were first prepared by using the sol–gel hydrothermal method and then modified with polydopamine (PDA) via noncovalent polymerization. Finally, PB-1 matrix composite films filled with PDA-modified BZT@MWCNTs nanoparticles were fabricated through a solution-casting method. Results indicated that the PDA-modified BZT@MWCNTs had good dispersion and binding force in the PB-1 matrix. These characteristics improved the dielectric and energy storage performances of the films. Specifically, the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film exhibited the best dielectric performance. At 1 kHz, the dielectric constant of this film was 25.43, which was 12.7 times that of pure PB-1 films. Moreover, its dielectric loss was 0.0077. Furthermore, under the weak electric field of 210 MV·m−1, the highest energy density of the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film was 4.57 J·cm−3, which was over 3.5 times that of PB-1 film (≈1.3 J·cm−3 at 388 MV·m−1).


2014 ◽  
Vol 38 (10) ◽  
pp. 4799-4806 ◽  
Author(s):  
Md. Shahinul Islam ◽  
Won San Choi ◽  
Tae Sung Bae ◽  
Young Boo Lee ◽  
Ha-Jin Lee

We report a simple protocol for the fabrication of multiwalled carbon nanotubes (MWCNTs) with a neuron-like structure for loading ultra-high densities of metal nanoparticles (NPs).


Sign in / Sign up

Export Citation Format

Share Document