Cleavage Planes of Icosahedral Quasicrystals: A Molecular Dynamics Study

2003 ◽  
Vol 805 ◽  
Author(s):  
Frohmut Rösch ◽  
Christoph Rudhart ◽  
Peter Gumbsch ◽  
Hans-Rainer Trebin

ABSTRACTThe propagation of mode I cracks in a three-dimensional icosahedral model quasicrystal has been studied by molecular dynamics techniques. In particular, the dependence on the plane structure and the influence of clusters have been investigated. Crack propagation was simulated in planes perpendicular to five-, two- and pseudo-twofold axes of the binary icosahedral model.Brittle fracture without any crack tip plasticity is observed. The fracture surfaces turn out to be rough on the scale of the clusters. These are not strictly circumvented, but to some extent cut by the dynamic crack. However, compared to the flat seed cracks the clusters are intersected less frequently. Thus the roughness of the crack surfaces can be attributed to the clusters, whereas the constant average heights of the fracture surfaces reflect the plane structure of the quasicrystal. Furthermore a distinct anisotropy with respect to the in-plane propagation direction is found.

1995 ◽  
Vol 409 ◽  
Author(s):  
B. L. Holian ◽  
S.J. Zhou ◽  
P.S. Lomdahl ◽  
N. Gronbech-Jensen ◽  
D.M. Beazley ◽  
...  

AbstractWe have studied brittle and ductile behavior and their dependence on system size and interaction potentials, using molecular-dynamics (MD) simulations. By carefully embedding a single sharp crack in two- and three-dimensional crystals, and using a variant of the efficient sound-absorbing reservoir of Holian and Ravelo [Phys. Rev. B 51, 11275 (1995)], we have been able to probe both the static and dynamic crack regimes. Our treatment of boundary and initial conditions allows us to elucidate early crack propagation mechanisms under delicate overloading, all the way up to the more extreme dynamic crack-propagation regime, for much longer times than has been possible heretofore (before unwanted boundary effects predominate). For example, we have used graphical display of atomic velocities, forces, and potential energies to expose the presence of localized phonon-like modes near the moving crack tip, just prior to dislocation emission and crack-branching events. We find that our careful MD method is able to reproduce the ZCT brittle-ductile criterion for short-range pair potentials [static lattice Green's function calculations of Zhou, Carlsson, and Thomson, Phys. Rev. Letters 72, 852 (1994)].We report on progress we have made in large-scale 3D simulations in samples that are thick enough to display realistic behavior at the crack tip, including emission of dislocation loops. Such. calculations, using our careful treatment of boundary and initial conditions - especially important in 3D - have the promise of opening up new vistas in fracture research.


Author(s):  
Yukihiko Okuda ◽  
Yuuji Saito ◽  
Masayuki Asano ◽  
Masakazu Jimbo ◽  
Hiroshi Hirayama ◽  
...  

Recently, several cracks have been found on the weld joints of Boiling Water Reactor (BWR) core shrouds during inspection. In order to ensure the continuous operation of nuclear power plants, it is necessary to assess the structural integrity of core shrouds with cracks on the weld joints. In general, a crack propagates in a complicated manner according to three-dimensional stress field and it is difficult to predict crack propagation direction and crack shape change. Usually, half ellipsoid crack shape is assumed and the propagation of the crack is calculated in the constant direction for assessment. In this study, crack propagation analysis procedure using the Finite Element Method (FEM) is developed for general shaped crack, and the procedure is verified by experiments. In this procedure, it is assumed that the crack propagates according to the maximum J-integral under three-dimensional stress fields and the re-mesh technique is used in the FEM analysis in order to calculate crack shape variation during propagation. The fatigue crack propagation tests under cyclic tensile load were performed to verify the analysis procedure. The specimens are made of a plate from 316SS and designed to generate non-uniform stress distribution on the crack front in order to observe continuous crack propagation direction change.


Author(s):  
K. Yashiro

Propagation of mode I crack along bi-metal (001) interfaces of Fe/W, Fe/Ni, Fe/Co and Ti/Mg is simulated by molecular dynamics and discussed with the eigenvalue/vector of the atomic elastic stiffness, B i j a = Δ σ i a / Δ ε j , and surface energy. The crack does not propagate at the interface but in the adjacent phase of smaller surface energy, except in Fe/Ni. The 1st eigenvalue η a (1) , or the solution of B i j a Δ ε j = η a Δ ε i of each atom, clarifies the difference of ‘soft/hard’ of both phases at the onset of crack propagation. In the case of Fe/Ni, the η a (1) of Ni atoms remarkably decreases in the Fe/Ni bi-metal structure, even though Ni has higher η a (1) than Fe at no-load perfect lattices. Thus the rupture occurs in the Ni side even though the Ni has slightly higher (001) surface energy than Fe. Deformation modes at the crack propagation are also visualized by the eigenvector of η a (1)  < 0 unstable atoms. This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to the globe’.


2016 ◽  
Vol 2 ◽  
pp. 395-402
Author(s):  
Fuminori Yanagimoto ◽  
Kazuki Shibanuma ◽  
Tomoya Kawabata ◽  
Katsuyuki Suzuki ◽  
Shuji Aihara

2013 ◽  
Vol 97 (7) ◽  
pp. 531-550 ◽  
Author(s):  
Łukasz Kaczmarczyk ◽  
Mohaddeseh Mousavi Nezhad ◽  
Chris Pearce

Sign in / Sign up

Export Citation Format

Share Document