Molecular dynamics study on atomic elastic stiffness at mode I crack along bi-metal interface

Author(s):  
K. Yashiro

Propagation of mode I crack along bi-metal (001) interfaces of Fe/W, Fe/Ni, Fe/Co and Ti/Mg is simulated by molecular dynamics and discussed with the eigenvalue/vector of the atomic elastic stiffness, B i j a = Δ σ i a / Δ ε j , and surface energy. The crack does not propagate at the interface but in the adjacent phase of smaller surface energy, except in Fe/Ni. The 1st eigenvalue η a (1) , or the solution of B i j a Δ ε j = η a Δ ε i of each atom, clarifies the difference of ‘soft/hard’ of both phases at the onset of crack propagation. In the case of Fe/Ni, the η a (1) of Ni atoms remarkably decreases in the Fe/Ni bi-metal structure, even though Ni has higher η a (1) than Fe at no-load perfect lattices. Thus the rupture occurs in the Ni side even though the Ni has slightly higher (001) surface energy than Fe. Deformation modes at the crack propagation are also visualized by the eigenvector of η a (1)  < 0 unstable atoms. This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to the globe’.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4380
Author(s):  
Alirio Andres Bautista Villamil ◽  
Juan Pablo Casas Rodriguez ◽  
Alicia Porras Holguin ◽  
Maribel Silva Barrera

The T-90 Calima is a low-wing monoplane aircraft. Its structure is mainly composed of different components of composite materials, which are mainly bonded by using adhesive joints of different thicknesses. The T-90 Calima is a trainer aircraft; thus, adverse operating conditions such as hard landings, which cause impact loads, may affect the structural integrity of aircrafts. As a result, in this study, the mode I crack propagation rate of a typical adhesive joint of the aircraft is estimated under impact and constant amplitude fatigue loading. To this end, effects of adhesive thickness on the mechanical performance of the joint under quasistatic loading conditions, impact and constant amplitude fatigue in double cantilever beam (DCB) specimens are experimentally investigated. Cyclic impact is induced using a drop-weight impact testing machine to obtain the crack propagation rate (da/dN) as a function of the maximum strain energy release rate (GImax) diagram; likewise, this diagram is also obtained under constant amplitude fatigue, and both diagrams are compared to determine the effect of each type of loading on the structural integrity of the joint. Results reveal that the crack propagation rate under impact fatigue is three orders of magnitude greater than that under constant amplitude fatigue.


2003 ◽  
Vol 805 ◽  
Author(s):  
Frohmut Rösch ◽  
Christoph Rudhart ◽  
Peter Gumbsch ◽  
Hans-Rainer Trebin

ABSTRACTThe propagation of mode I cracks in a three-dimensional icosahedral model quasicrystal has been studied by molecular dynamics techniques. In particular, the dependence on the plane structure and the influence of clusters have been investigated. Crack propagation was simulated in planes perpendicular to five-, two- and pseudo-twofold axes of the binary icosahedral model.Brittle fracture without any crack tip plasticity is observed. The fracture surfaces turn out to be rough on the scale of the clusters. These are not strictly circumvented, but to some extent cut by the dynamic crack. However, compared to the flat seed cracks the clusters are intersected less frequently. Thus the roughness of the crack surfaces can be attributed to the clusters, whereas the constant average heights of the fracture surfaces reflect the plane structure of the quasicrystal. Furthermore a distinct anisotropy with respect to the in-plane propagation direction is found.


2018 ◽  
Vol 67 (2) ◽  
pp. 222-228
Author(s):  
Tomoaki NIIYAMA ◽  
Tomotsugu SHIMOKAWA ◽  
Taishi FUJIMOTO

Sign in / Sign up

Export Citation Format

Share Document